
Frequent 
Itemset 
Mining

• Ravi Kumar Gupta
• https://kravigupta.in



Mining
• Mining – Process of extracting something valuable 
• Data Mining – Process of discovering patterns, correlations, anomalies, relationships 

within the data

• Consider a supermarket with a lot of products
• People buy stuff. 
• In the bill – all products are items
• Sets of those products - itemset



Items



Itemsets



Recall the 
Example

Fathers
Who are sent to buy 

diapers
Might pickup beers 

for themselves.



Frequent Itemset Mining
• Goal: Find products frequently bought together.

Frequent itemsets
• Items which are frequently purchased together 
• Meets a "minimum support" threshold in database.

• Support:
• How many times an itemset is in transactions
• Example: 10 out of 100 transactions show milk and bread together

• → Support = 0.1 for {milk, bread}.



Overview

• Key foundation for numerous data mining tasks.
• Aids in detecting patterns such as association rules, correlations, 

sequences, and more.

Role in Data Mining:

• Popularly used for discovering association rules.
• Identifies sets of items or characteristics frequently co-occurring in 

databases.

Application:



Market-Basket 
Model



Market-Basket Model

• Contains a set of items known as an itemset.
• Number of items in a basket usually small compared to total items.
• Total baskets typically very large, often beyond main memory capacity.

Basket Composition:

• Items aren't strictly "contained" in baskets.
• Focus on co-occurrences of items in relation to a basket.
• General definition:
•I={i1,...,ik} : Set of k items.
• B={b1,...,bn} : Set of n item subsets. Each bi is a basket.

Items and Baskets:



Market-Basket Model

• Examples:
• Retail:
• I represents items in a store.
• Each basket is a purchase transaction.

• Document Basket:
• I includes dictionary words and proper nouns.
• Each basket is a single document containing words from the document.



Frequent-Itemset Mining
• Definitions:
• I={i1,...,ik}: Set of items.
• D: Task-relevant data consisting of database transactions.
• Each transaction T: A subset of items from I such that T⊆I.
• Every transaction has an identifier: TID – transaction id
• A transaction T contains set A if and only if A⊆T.

• Itemset:
• Collection of items.
• An itemset with k distinct items is termed a k-itemset.
• Example: {computer, anti-virus software, printer, flash-drive} is a 4-itemset.
• {Bread, butter, Milk} is a 3-itemset



Frequent-Itemset Mining

• Occurrence Frequency:
• Number of transactions that have the itemset.
• Also called frequency, support count, or itemset count.

• Frequent Itemset:
• An itemset is "frequent" if its support count meets a certain threshold.
• A minimum support s is defined.
• An itemset I with support ≥ s is deemed a frequent itemset.



Example
• Items = {milk (m), coke (c), pepsi (p), beer (b), juice (j)} 

• Minimum support s = 3

Transactions 
1.T1 = {m, c, b} 
2.T2 = {m, p, j} 
3.T3 = {m, b} 
4.T4 = {c, j} 
5.T5 = {m, p, b} 
6.T6 = {m, c, b, j} 
7.T7 = {c, b, j} 
8.T8 = {b, c} 

Find the Frequent Itemsets?



Count support for individual item Count the support for 2-itemsets

Count the support for 3-itemsets

{m}, {c}, {b}, {j} {m,b}, {c,b}, {c,j} Nothing, all below 3

Transactions 
• T1 = {m, c, b} 
• T2 = {m, p, j} 
• T3 = {m, b} 
• T4 = {c, j}

• T5 = {m, p, b} 
• T6 = {m, c, b, j} 
• T7 = {c, b, j} 
• T8 = {b, c} 



Applications - Offline Stores
Offline Stores
• Soaps on floor 1, Towels on floor 10
• High occurrence of baskets with both soaps and towels.

Strategies for store management
• On-the spot sales – Place some towels and bathing accessories with soaps on floor 1
• Pricing strategy – Put discount on soaps and raise price of towels



Applications - Online Commerce
• Online – E-Retail like E-bay or Amazon
• Scale – Millions of items and customers
• Can tailor offer even for individual customers
• Market based strategy – 

• Each basket represents items bought by a specific customer
• Recommended items that other customers with similar basket purchased

• Collaborative filtering – 
• Finding customers with similar purchase
• Recommend items based on what other customers bought but this customer hasn’t.

• Scale implication
• Even few instances of same itemset can be of value
• Because offers can be personalised even for a single customer
• Need Millions of pairs for diverse recommendation



Applications – Brick and Mortar Stores

• Traditional street-side businesses

• Scale – Limited by physical space and location

• Market based strategy – 
• Identify popular combinations
• Organise store layout or promotions based on these combinations

• Bulk Strategy
• Focus on items combinations bought by vast numbers

• Scale implication
• Need thousands of occurrences of same interest to take action
• Limited number of promotions or rearrangement possible due to physical constraints



Other Applications
• Customer transaction analysis
• Other data mining problems

• Classification, clustering, outlier analysis
• Web mining

• Processes web logs to determine browsing behaviour patterns.
• Applications: Website design optimization, Making user-specific recommendations

• Software bug analysis
• Chemical and Biological analysis

• Drug design
• Genetic research



Association Rule Mining



Association Rule Mining
• Objective: Discover rules that indicate how certain items in a dataset relate to other items
• An Association Rule is typically represented as 

• Implying that if items in I appear in a transaction, j is likely to appear too

Criteria for Rule Selection:
• Support – measures the rule’s overall popularity in the dataset
• Confidence – Measures the rule’s reliability



Association Rule Mining
Criteria for Rule Selection:
• Support – measures the rule’s overall popularity in the dataset
• Confidence – Measures the rule’s reliability



Example
Baskets



Association Rule Mining
• Confidence can be easily derived from A and A ∪ B.

• Once the support counts of A, B, and A ∪ B it is straightforward to derive the association rules A à B 
and B à A.

• Thus, problem of mining association rules can be reduced to – mining frequent itemsets

This can be viewed as two-step process

• Find all frequent itemsets 
• Each of the itemsets will occur at least as frequently as predetermined minimum support count
• Various algorithms – Apriori, FP-growth, Eclat etc. 

• Generate strong association rules from the frequent itemsets
• The rules must satisfy minimum support and minimum confidence 
• The rules are generated by creating different combinations of antecedent and consequent



Apriori Algorithm
Algorithm for finding Frequent Itemsets



Apriori Algorithm
• Goal is to find pairs of items that occur frequently together

• Ensuring efficient use of memory and computational resources

• Reduces the number of candidates
• If an item is infrequent, then any of its superset will also be infrequent



Apriori Algorithm
1.Initialization: Define a support threshold s. 
2.Candidate Generation: Generate candidate itemsets of size k. Initially k = 1.
3.Counting: For each candidate itemset, count its occurrences in the dataset.
4.Pruning: Eliminate the candidates that do not meet the support threshold s.
5.Incrementing and Repeating: Generate new candidate itemsets of size k+1 using the 

frequent itemsets from the previous step. Repeat the counting and pruning steps.
6.Termination: Stop when no more frequent itemsets can be generated.



Items – {a,b,c,d,e}
Baskets
1.{a, b} 
2.{a, b, c} 
3.{a, b, d} 
4.{ b, c, d} 
5.{a, b, c, d} 
6.{a, b, d, e} 

Support threshold
s = 3.

Example - Apriori



Algorithm of Park-Chen-Yu
(PCY)

Algorithm for finding Frequent Itemsets



Limitations of Apriori
• Multiple Database Scans: Requires multiple passes over the entire dataset.

• Memory Consumption: Generates large numbers of supersets.

• Candidate Overhead: Excessive computation for potentially non-frequent itemsets.
• Sub-optimal Memory Use: Does not leverage available memory efficiently.



PCY Algorithm
• Algorithm called as DHP – Direct Hashing and Pruning
• Example - 



Example



Example

(x+y) mod 3



PCY Algorithm
• Hash-based Bucket Counting: Reduces candidate pairs using hash mechanism.
• Optimal Memory Use: Efficiently uses memory for both item counts and hash table of 

pairs.
• Candidate Reduction: Minimized computational effort by pruning many item pairs.
• Efficient Scanning: Potentially fewer passes needed for subsequent itemsets.



Why consider PCY over Apriori
• Memory Efficiency: PCY utilizes available memory more effectively.
• Reduced I/O: Fewer database scans save processing time.
• Pruned Candidates: Fewer candidate itemsets reduce computational efforts.
• Note: Efficacy depends on data distribution and hash function quality.


