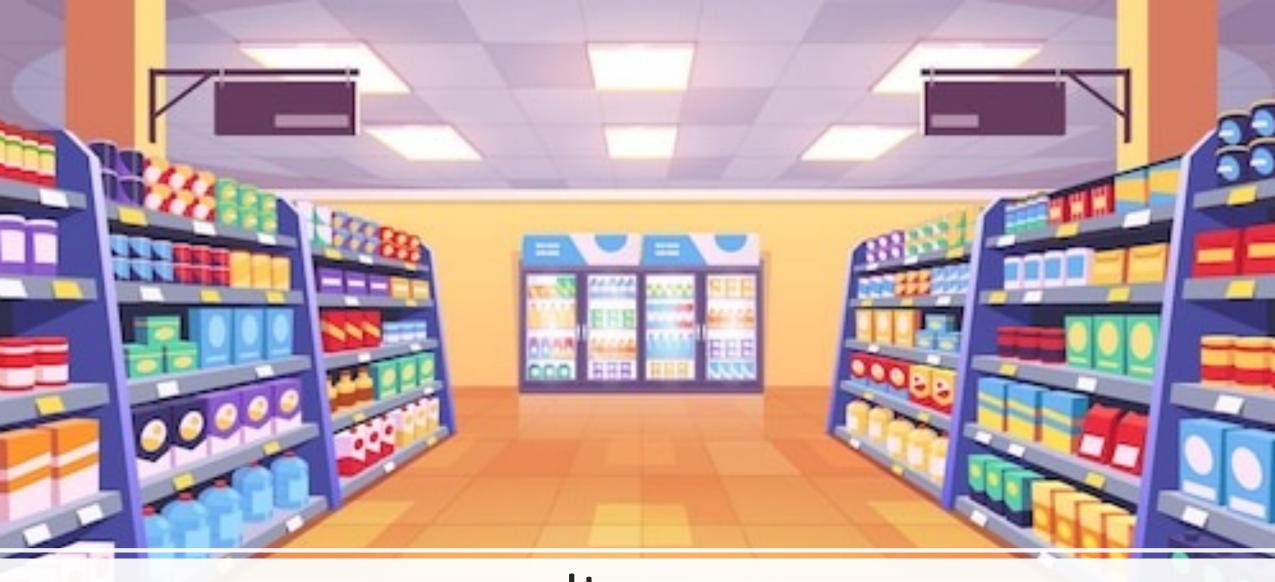
Frequent Itemset Mining

- Ravi Kumar Gupta
- https://kravigupta.in

Mining

- Mining Process of extracting something valuable
- Data Mining Process of discovering patterns, correlations, anomalies, relationships within the data
- Consider a supermarket with a lot of products
- People buy stuff.
- In the bill all products are **items**
- Sets of those products itemset



Items

Itemsets

Doli	ore sit aı «DOLOI	
* * * * * * * * ID: **684jq77	* * * *	******
CODE	**9	786UJY6643
eiusmod		4.07
adipiscing elit		75.0
ullamco		93.09
voluptate		8.06
*****	***	******
TOTAL: 1	80.22	110 10 10 10 1
TAX: 14%	25.02	
CHANGE	57.03	
INN **454	759900	

57747 Quis Officia	
ID #5790949Y	[//=1
U.O.S 00968544	
consectetur	4.9
dolore	8.09
mollit	55.8
sunt in culp	34.7
	44.03
minim veniam	
	7.98
15% TAX	
CASH	580.4\$
Check number 30.09.21	#ghy577 13:03:21
- 1714Sr	128
	200
- 2023	10 - E
	94

FN 0035

Online

ID: UUPF**JN#K900

≡ 0.00

0079673

084278940800

≡ 967.90

96.7

145.05

APPROVED

THANK YOU!

velit esse

proident

dolor sit

deserunt

aute irure

TOTAL

CA	ASH
Proident	
Irure dolor	
Laborum	
Excepteur sint	
Duis aute	
Lorem	
Ut enim ad	
12/18/01	15 :34:03
code:#	7uu6677if
A A SE SEA AND	
AM	ET
Dolore eu	fugiat nulla

RECEIPT

Sit Amet HOT LINE: 00066742222 ID #0064336

01

.....#...

30.5

21.35

4.58

7.30

4.06

4.09

3.06

9.7

40.5

35.20

6.98

34.90 22.65

68.09

44.06

33.8 58.2

NAME OF A DESCRIPTION O

THANK YOU FOR YOUR PURCHASE!

0001

CASH#1

esse cillum

non proident

commodo

veniam

pariatur

amet

magna

ipsum

cupidatat

TAX [20%]

JPI0744

Dolor sit	amet
ID: #H97	98978
irure dolor	09.6
Ut enim	35.09
consequat	6.8
nostrud	44.07
Duis	8.0
minim veniam	33.00
dolor sit	6.9
INN 990897**65 DD/MM/	09:08:12 YYYY

	EM IPSUM	
DATE		21.08/2021
	SENDER	
Excepteur Sint Anim id est lab tel. 08778463		
Quis nostrud ex Enim Ad Venia tel. 67906796		
Duis aute: la		
WEIGHT	0.5kg 80\$	
Laborum		Officia

Recall the Example

Fathers Who are sent to buy diapers Might pickup beers for themselves.

Frequent Itemset Mining

• Goal: Find products frequently bought together.

Frequent itemsets

- Items which are frequently purchased together
- Meets a "minimum support" threshold in database.
- Support:
- How many times an itemset is in transactions
- Example: 10 out of 100 transactions show milk and bread together
 - \rightarrow Support = 0.1 for {milk, bread}.

Overview

Role in Data Mining:

- Key foundation for numerous data mining tasks.
- Aids in detecting patterns such as association rules, correlations, sequences, and more.

Application:

- Popularly used for discovering association rules.
- Identifies sets of items or characteristics frequently co-occurring in databases.

Market-Basket Model

Market-Basket Model

Basket Composition:

- Contains a set of items known as an itemset.
- Number of items in a basket usually small compared to total items.
- Total baskets typically very large, often beyond main memory capacity.

Items and Baskets:

- Items aren't strictly "contained" in baskets.
- Focus on co-occurrences of items in relation to a basket.
- General definition:
 - I={i1,...,ik} : Set of k items.
 - B={b1,...,bn} : Set of n item subsets. Each bi is a basket.

Market-Basket Model

- Examples:
- Retail:
 - I represents items in a store.
 - Each basket is a purchase transaction.
- Document Basket:
 - I includes dictionary words and proper nouns.
 - Each basket is a single document containing words from the document.

Frequent-Itemset Mining

• Definitions:

- I={i1,...,ik}: Set of items.
- D: Task-relevant data consisting of database transactions.
- Each transaction T: A subset of items from I such that T⊆I.
- Every transaction has an identifier: TID transaction id
- A transaction T contains set A if and only if A⊆T.

• Itemset:

- Collection of items.
- An itemset with k distinct items is termed a k-itemset.
- Example: {computer, anti-virus software, printer, flash-drive} is a 4-itemset.
- {Bread, butter, Milk} is a 3-itemset

Frequent-Itemset Mining

• Occurrence Frequency:

- Number of transactions that have the itemset.
- Also called **frequency**, **support count**, or **itemset count**.

• Frequent Itemset:

- An itemset is "frequent" if its support count meets a certain threshold.
- A minimum support s is defined.
- An itemset I with support \geq s is deemed a frequent itemset.

Example

- Items = {milk (m), coke (c), pepsi (p), beer (b), juice (j)}
- Minimum support *s* = 3

Transactions 1.T1 = {m, c, b} 2.T2 = {m, p, j} 3.T3 = {m, b} 4.T4 = {c, j} 5.T5 = {m, p, b} 6.T6 = {m, c, b, j} 7.T7 = {c, b, j} 8.T8 = {b, c}

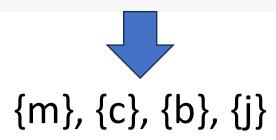
Find the Frequent Itemsets?

Transactions

- T1 = {m, c, b} T5 = {m, p, b}
- T2 = {m, p, j} T6 = {m, c, b, j}
- T3 = {m, b} T7 = {c, b, j}
- T4 = {c, j}
- T7 = {c, b, j}
 T8 = {b, c}

Count support for individual item

ltem	Count
m	5 (T1, T2, T3, T5, T6)
с	5 (T1, T4, T6, T7, T8)
b	6 (T1, T3, T5, T6, T7, T8)
р	2 (T2, T5)
j	4 (T2, T4, T6, T7)



Transactions Itemset Count {m, c} 3 T1, T6 {m, b} T1, T3, T5, T6 4 2 T2, T6 {m, j} 5 T1, T6, T7, T8 {c, b} {c, j} 3 T4, T6, T7 {b, j} 2 T6, T7 {m,b}, {c,b}, {c,j}

Count the support for 2-itemsets

Count the support for 3-itemsets

Count	Transactions	
2	T1, T6	
1	Т6	
1	Т6	
2	T6, T7	
	2 1 1	

Nothing, all below 3

Applications - Offline Stores

Offline Stores

- Soaps on floor 1, Towels on floor 10
- High occurrence of baskets with both soaps and towels.

Strategies for store management

- On-the spot sales Place some towels and bathing accessories with soaps on floor 1
- Pricing strategy Put discount on soaps and raise price of towels

Applications - Online Commerce

• Online – E-Retail like E-bay or Amazon

- Scale Millions of items and customers
- Can tailor offer even for individual customers
- Market based strategy
 - Each basket represents items bought by a specific customer
 - Recommended items that other customers with similar basket purchased

• Collaborative filtering –

- Finding customers with similar purchase
- Recommend items based on what other customers bought but this customer hasn't.
- Scale implication
 - Even few instances of same itemset can be of value
 - Because offers can be personalised even for a single customer
 - Need Millions of pairs for diverse recommendation

Applications – Brick and Mortar Stores

Traditional street-side businesses

- Scale Limited by physical space and location
- Market based strategy
 - Identify popular combinations
 - Organise store layout or promotions based on these combinations
- Bulk Strategy
 - Focus on items combinations bought by vast numbers
- Scale implication
 - Need thousands of occurrences of same interest to take action
 - Limited number of promotions or rearrangement possible due to physical constraints

Other Applications

- Customer transaction analysis
- Other data mining problems
 - Classification, clustering, outlier analysis
- Web mining
 - Processes web logs to determine browsing behaviour patterns.
 - Applications: Website design optimization, Making user-specific recommendations
- Software bug analysis
- Chemical and Biological analysis
 - Drug design
 - Genetic research

- Objective: Discover rules that indicate how certain items in a dataset relate to other items
- An Association Rule is typically represented as $\ I
 ightarrow j$
 - Implying that if items in I appear in a transaction, j is likely to appear too
 Formal Definition:
 - * $I = \{I_1, I_2, ..., I_m\}$: Set of m distinct attributes or items.
 - * D: Database of transactions. Each transaction T is a set of items from I.
 - * Rule: $X \Rightarrow Y$, where both X and Y are itemsets from I , and $X \cap Y = \emptyset$.
 - * X is the antecedent, and Y is the consequent.

Criteria for Rule Selection:

- Support measures the rule's overall popularity in the dataset
- Confidence Measures the rule's reliability

Criteria for Rule Selection:

- Support measures the rule's overall popularity in the dataset
- Confidence Measures the rule's reliability

Support: A rule $X \Rightarrow Y$ is interesting if the union $X \cup Y$ is a frequent itemset.

• $support(X \cup Y) \ge \text{minimum support } s.$

Confidence: Measures the rule's reliability.

- Confidence $(X \Rightarrow Y) = \frac{support(X \cup Y)}{support(X)}$.
- * Represents the likelihood that Y will appear in a transaction given X is present.
- * A rule is deemed interesting if its confidence exceeds a minimum confidence threshold c

Example

Baskets

- **1.** $B_1 = \{m, c, b\}$
- **2.** $B_2 = \{m, p, j\}$
- **3.** $B_3 = \{m, b\}$
- **4.** $B_4 = \{c, j\}$
- **5.** $B_5 = \{m, b, p\}$
- **6.** $B_6 = \{m, c, b, j\}$
- 7. $B_7 = \{c, b, j\}$
- **8.** $B_8 = \{m, b, c\}$

An association rule
$$\{m, b\} \rightarrow c$$
 has Support = Frequency $\{m, b, c\} = \frac{3}{8} = 37.5\%$

Confidence =
$$\frac{\text{Support}\{m, b, c\}}{\text{Support}\{m, b\}} = \frac{3}{5} = 60\%$$

- Confidence can be easily derived from A and A U B.
- Once the support counts of A, B, and A ∪ B it is straightforward to derive the association rules A → B and B → A.
- Thus, problem of mining association rules can be reduced to mining frequent itemsets

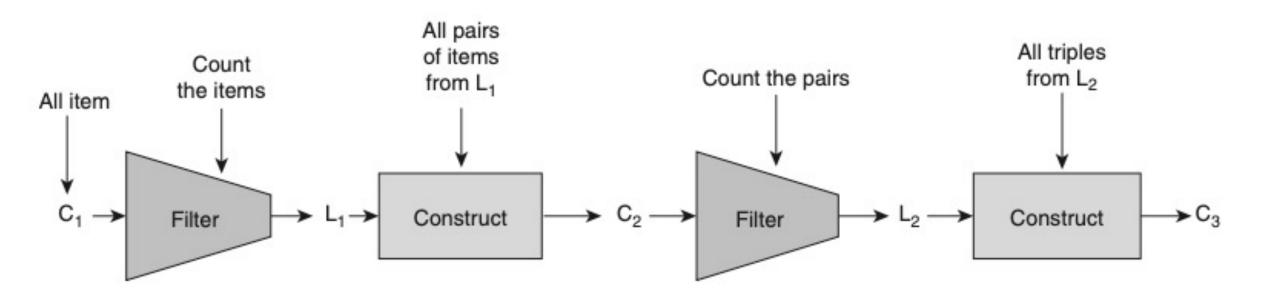
This can be viewed as two-step process

- Find all frequent itemsets
 - Each of the itemsets will occur at least as frequently as predetermined minimum support count
 - Various algorithms Apriori, FP-growth, Eclat etc.
- Generate strong association rules from the frequent itemsets
 - The rules must satisfy minimum support and minimum confidence
 - The rules are generated by creating different combinations of antecedent and consequent

Apriori Algorithm for finding Frequent Itemsets

Apriori Algorithm

- Goal is to find pairs of items that occur frequently together
 - Ensuring efficient use of memory and computational resources
- Reduces the number of candidates
 - If an item is infrequent, then any of its superset will also be infrequent



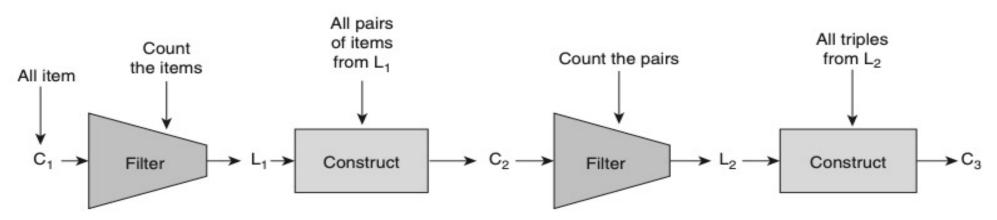
Apriori Algorithm

1.Initialization: Define a support threshold s.

2.Candidate Generation: Generate candidate itemsets of size k. Initially k = 1.

3.Counting: For each candidate itemset, count its occurrences in the dataset.

- 4.Pruning: Eliminate the candidates that do not meet the support threshold s.
- **5.Incrementing and Repeating**: Generate new candidate itemsets of size k+1 using the frequent itemsets from the previous step. Repeat the counting and pruning steps.
- 6.Termination: Stop when no more frequent itemsets can be generated.



Example - Apriori

Items – {a,b,c,d,e} Baskets 1.{a, b} 2.{a, b, c} 3.{a, b, d} 4.{ b, c, d} 5.{a, b, c, d} 6.{a, b, d, e} Support threshold s = 3.

```
(a) Construct C<sub>1</sub> = {{a}, {b}, {c}, {d}, {e} }.
(b) Count the support of itemsets in C<sub>1</sub>.
(c) Remove infrequent itemsets to get L<sub>1</sub> = { {a}, {b}, {c}, {d} }.
```

2.

1.

- (a) Construct $C_2 = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\} \}.$
- (b) Count the support of itemsets in C_2 .
- (c) Remove infrequent itemsets to get $L_2 = \{ \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\} \}$.

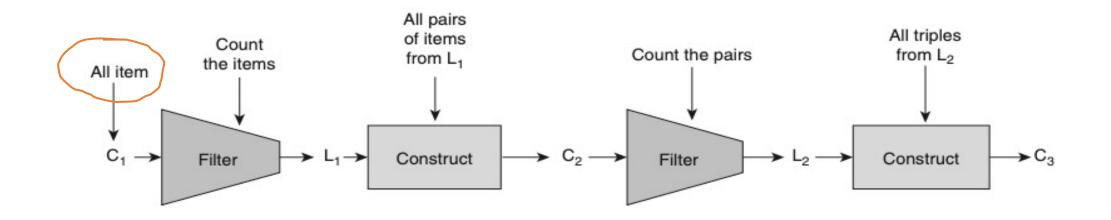
3.

- (a) Construct $C_3 = \{ \{a, b, c\}, \{a, b, d\}, \{b, c, d\} \}$. Note that we can be more careful here with the rule generation. For example, we know $\{b, c, d\}$ cannot be frequent since $\{c, d\}$ is not frequent. That is, $\{b, c, d\}$ should not be in C_3 since $\{c, d\}$ is not in L_2 .
- (b) Count the support of itemsets in C_3 .
- (c) Remove infrequent itemsets to get $L_3 = \{ \{a, b, d\} \}$.
- **4.** Construct $C_4 = \{\text{empty set }\}$.

Algorithm of Park-Chen-Yu (PCY) Algorithm for finding Frequent Itemsets

Limitations of Apriori

- Multiple Database Scans: Requires multiple passes over the entire dataset.
- Memory Consumption: Generates large numbers of supersets.
- Candidate Overhead: Excessive computation for potentially non-frequent itemsets.
- Sub-optimal Memory Use: Does not leverage available memory efficiently.



PCY Algorithm

- Algorithm called as DHP Direct Hashing and Pruning
- Example -

Given: Database D; minimum support = 2 and the following data.

TID	Items
1	1,3,4
2	2,3,5
3	1,2,3,5
4	2,5

Example

Given: Database D; minimum support = 2 and the following data.

TID	Items
1	1,3,4
2	2,3,5
3	1,2,3,5
4	2,5

Example

Pass 1:

Step 1: Scan D along with counts. Also form possible pairs and hash them to the buckets. For example, {1,3}:2 means pair {1,3} hashes to bucket 2.

(x+y) mod 3

TID .	Items	Itemset	Sup		
1 1	1,3,4	{1}	2		
	2,3,5	{2}	3	T1	$\{1,3\}:2, \{1,4\}:1, \{3,4\}:3$
		{3 }	3	T2	{2,3}:1 , {2,5}:3, {3,5}:5
	1,2,3,5	{4}	1	T3	$\{1,2\}:4, \{1,3\}:2, \{1,5\}:5, \{2,3\}:1, \{2,5\}:3\}$
4 2	2,5	{5}	3	Τ4	{2,5}:3

Step 2: Using the hash function as discussed in step 1 the bucket looks like the one shown below.

Bucket	1	2	3	4	5	
Count	3	2	4	1	3	

PCY Algorithm

- Hash-based Bucket Counting: Reduces candidate pairs using hash mechanism.
- **Optimal Memory Use**: Efficiently uses memory for both item counts and hash table of pairs.
- Candidate Reduction: Minimized computational effort by pruning many item pairs.
- Efficient Scanning: Potentially fewer passes needed for subsequent itemsets.

Why consider PCY over Apriori

- Memory Efficiency: PCY utilizes available memory more effectively.
- **Reduced I/O**: Fewer database scans save processing time.
- **Pruned Candidates**: Fewer candidate itemsets reduce computational efforts.
- Note: Efficacy depends on data distribution and hash function quality.