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Mining

 Mining — Process of extracting something valuable

e Data Mining — Process of discovering patterns, correlations, anomalies, relationships
within the data

e Consider a supermarket with a lot of products
* People buy stuff.
* In the bill — all products are items

e Sets of those products - itemset
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Example
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Frequent Itemset Mining

* Goal: Find products frequently bought together.

Frequent itemsets
* Items which are frequently purchased together

* Meets a "minimum support" threshold in database.

Support:

How many times an itemset is in transactions

Example: 10 out of 100 transactions show milk and bread together
= Support = 0.1 for {milk, bread}.



Overview

mmew  ROle in Data Mining:

e Key foundation for numerous data mining tasks.

e Aids in detecting patterns such as association rules, correlations,
seguences, and more.

mmmm  Application:

e Popularly used for discovering association rules.

e |dentifies sets of items or characteristics frequently co-occurring in
databases.
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Market-Basket Model

ey Basket Composition:

e Contains a set of items known as an itemset.
e Number of items in a basket usually small compared to total items.
e Total baskets typically very large, often beyond main memory capacity.

e Items and Baskets:

e [tems aren't strictly "contained" in baskets.
e Focus on co-occurrences of items in relation to a basket.
e General definition:

e I={i1,...,ik} : Set of k items.

e B={b1,...,bn} : Set of n item subsets. Each bi is a basket.




Market-Basket Model

* Examples:

e Retail:

* Irepresentsitems in a store.
* Each basket is a purchase transaction.

* Document Basket:
* Iincludes dictionary words and proper nouns.
e Each basket is a single document containing words from the document.



Frequent-ltemset Mining

* Definitions:

e |={il,...,ik}: Set of items.
D: Task-relevant data consisting of database transactions.
Each transaction T: A subset of items from | such that T<I.
Every transaction has an identifier: TID — transaction id
A transaction T contains set A if and only if ACT.

* [temset:
e Collection of items.
* An itemset with k distinct items is termed a k-itemset.
 Example: {computer, anti-virus software, printer, flash-drive} is a 4-itemset.
* {Bread, butter, Milk} is a 3-itemset



Frequent-ltemset Mining

* Occurrence Frequency:
e Number of transactions that have the itemset.
* Also called frequency, support count, or itemset count.

* Frequent Itemset:
* An itemset is "frequent” if its support count meets a certain threshold.
* A minimum support s is defined.
* An itemset | with support = s is deemed a frequent itemset.



Example

* Items = {milk (m), coke (c), pepsi (p), beer (b), juice (j)}

* Minimum supports =3

Transactions

1.T1 ={m, c, b}

2.T2={m, p, j}

3.T3 ={m, b}

4.T4 ={c, j} .

5.T5 = {m, p, b} Find the Frequent Itemsets?
6.T6 ={m, ¢, b, j}

7.T7={c, b, j}

8.T8 = {b, c}



Transactions

* T1={m,c, b} e T5={m, p, b}
e T2-= {m, P, j} c T6= {m; o7 bl j}
e T3={m, b} e T7={c, b, j}
c T4={cj} * T8 ={b,c}
Count support for individual item Count the support for 2-itemsets
ltem S ltemset Count Transactions Count the support for 3-itemsets
m 5(T1, T2, T3, T5, T6) {m, ¢} 3 T1,T6 ltemset Count Transactions
,b 4 T1,T3,T5,T6
c 5(T1, T4, T6, T7, T8) m. b} {m, c, b} 2 T1,T6
{m, j} 2 T2, T6 _
b 6(T1, T3, T5,T6,TT7, T8) {m,c,j} 1 T6
{c, b} 5 T1,T6,T7, T8
P 2(T2,TS) {m, b, j} 1 T6
{c,j} 3 T4,T6,T7
j 4(T2,T4,T6,TT) ®.3) 5 S {c, b, j} 2 T6, T7
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im}, {c}, 1b}, {j} im,b}, {¢,b}, {c,j} Nothing, all below 3



Applications - Offline Stores

Offline Stores
e Soaps on floor 1, Towels on floor 10

* High occurrence of baskets with both soaps and towels.

Strategies for store management
* On-the spot sales — Place some towels and bathing accessories with soaps on floor 1

e Pricing strategy — Put discount on soaps and raise price of towels



Applications - Online Commerce

* Online — E-Retail like E-bay or Amazon
e Scale — Millions of items and customers
e (Can tailor offer even for individual customers

* Market based strategy —
* Each basket represents items bought by a specific customer
 Recommended items that other customers with similar basket purchased

* Collaborative filtering —
* Finding customers with similar purchase
* Recommend items based on what other customers bought but this customer hasn’t.

e Scale implication
* Even few instances of same itemset can be of value
* Because offers can be personalised even for a single customer
* Need Millions of pairs for diverse recommendation



Applications — Brick and Mortar Stores

Traditional street-side businesses

Scale — Limited by physical space and location

Market based strategy —
* |dentify popular combinations
* Organise store layout or promotions based on these combinations

Bulk Strategy
* Focus on items combinations bought by vast numbers

Scale implication
* Need thousands of occurrences of same interest to take action
* Limited number of promotions or rearrangement possible due to physical constraints



Other Applications

Customer transaction analysis

Other data mining problems
 Classification, clustering, outlier analysis

Web mining
* Processes web logs to determine browsing behaviour patterns.
* Applications: Website design optimization, Making user-specific recommendations

Software bug analysis

Chemical and Biological analysis
* Drug design
* Genetic research



Association Rule Mining



Association Rule Mining

* Objective: Discover rules that indicate how certain items in a dataset relate to other items

* An Association Rule is typically represented as I — j
* Implying that if items in | appear in a transaction, j is likely to appear too

Formal Definition:

* I = {5, I,..., I, } : Set of m distinct attributes or items.
* D :Database of transactions. Each transaction 7' is a set of items from 1.
* Rule: X = Y ,whereboth X and Y areitemsetsfromI,and X N'Y = ().

* X isthe antecedent,and Y is the consequent.

Criteria for Rule Selection:
e Support — measures the rule’s overall popularity in the dataset
* Confidence — Measures the rule’s reliability



Association Rule Mining

Criteria for Rule Selection:
e Support — measures the rule’s overall popularity in the dataset
* Confidence — Measures the rule’s reliability

Support: Arule X = Y isinteresting if the union X U Y is a frequent itemset.
* support(X UY) > minimum support s.
Confidence: Measures the rule's reliability.

: support(XUY
* Confidence(X = Y) = °tﬁf;}0}:o£t(xv) 3

* Represents the likelihood that Y will appear in a transaction given X is present.

* Arule is deemed interesting if its confidence exceeds a minimum confidence threshold ¢



Example

Baskets

By =1{m, ¢ b}
B, = {m, p, j}
By = {m, b}
Bs={c j}

Bs = {m, b, p}
Bs={m c b j} Confidence =

B;={c, b, j}
Bg = {m, b, c}

3

An association rule {m, b} — c has Support = Frequency{m,b,c} = » =37.5%

Support{m,b,c} 3

=60%
Support{m,b} 5

® N NN WD



Association Rule Mining

* Confidence can be easily derived from A and A U B.

* Once the support counts of A, B, and A U B it is straightforward to derive the association rules A 2> B
and B 2 A.

* Thus, problem of mining association rules can be reduced to — mining frequent itemsets

This can be viewed as two-step process

* Find all frequent itemsets
* Each of the itemsets will occur at least as frequently as predetermined minimum support count
* Various algorithms — Apriori, FP-growth, Eclat etc.

* Generate strong association rules from the frequent itemsets
* The rules must satisfy minimum support and minimum confidence
* The rules are generated by creating different combinations of antecedent and consequent



Apriori Algorithm

Algorithm for finding Frequent ltemsets



Apriori Algorithm

* Goalis to find pairs of items that occur frequently together
* Ensuring efficient use of memory and computational resources

* Reduces the number of candidates
* If an item is infrequent, then any of its superset will also be infrequent

All pairs
: All triples
Count of items .
. from L Count the pairs from L,
All item the 'fms l ! l l
Cy —>  Filter » Ly—> Construct [—> Co—> Filter » L, —>|  Construct

/ /

»C,



Apriori Algorithm

1.Initialization: Define a support threshold s.

2.Candidate Generation: Generate candidate itemsets of size k. Initially k = 1.

3.Counting: For each candidate itemset, count its occurrences in the dataset.

4.Pruning: Eliminate the candidates that do not meet the support threshold s.

5.Incrementing and Repeating: Generate new candidate itemsets of size k+1 using the
frequent itemsets from the previous step. Repeat the counting and pruning steps.

6.Termination: Stop when no more frequent itemsets can be generated.

All pairs
Count of items
the items from L,

All item

] |

1 L;—> Construct

Count the pairs

l

All triples
from L,

l

Construct

—» C,




Example - Apriori

(a) Construct C, = {{a}, {6}, {c}, {4}, {e} }.

Items — {a,b,c,d, e} (b) Count the support of itemsets in C.

Baskets (c) Remove infrequent itemsets to get L, = { {a}, {4}, {c}, {4} }.

1.{a, b} 2.

2.{a, b, c}

3.{a, b, d} (a) Construct C, ={{a, b}, {a, c}, {a, d}, {b, c}, {6, d}, {c d} }.

44b, ¢ d) (b) Count the support of itemsets in C,.

5.{a, b, ¢, d} (c) Remove infrequent itemsets to get L, = { {a, b}, {a, 4}, {b, c}, {6, d} }.

6.{a, b, d, e} 3.

Support threshold (@) Construct C;=1{1{a, b, ¢}, {4, b, 4}, {b, ¢, d} }. Note that we can be more careful here with the

<=3 rule generation. For example, we know {4, ¢, 4} cannot be frequent since {¢, 4} is not frequent.
That is, {5, ¢, d} should not be in Cjsince {¢, 4} is not in L,.

(b) Count the support of itemsets in C.
(c) Remove infrequent itemsets to get L3 ={ {4, 4, 4} }.

4. Construct C; = {empty set }.



Algorithm of Park-Chen-Yu
(PCY)

Algorithm for finding Frequent ltemsets



Limitations of Apriori

Multiple Database Scans: Requires multiple passes over the entire dataset.

Memory Consumption: Generates large numbers of supersets.

Candidate Overhead: Excessive computation for potentially non-frequent itemsets.

Sub-optimal Memory Use: Does not leverage available memory efficiently.

All pairs
of items All triples

S from L, Count the pairs from Ly

All item the items

H g l l l

1 —> Filter Ly—> Construct |—> Co—>{ Filter L, —>»{ Construct




PCY Algorithm

* Algorithm called as DHP — Direct Hashing and Pruning

 Example -

Given: Database D; minimum support = 2 and the following data.

TID Items
1 1,3,4
2 2,3,5
3 1,2,3,5
4 2,5




I Example

Given: Database D; minimum support = 2 and the following data.

TID Items
1 1,3,4
2 2,3,5
3 1,2,3,5
4 2,5




I Example

Pass 1:

Step 1: Scan D along with counts. Also form possible pairs and hash them to the buckets.
For example, {1,3}:2 means pair {1,3} hashes to bucket 2.

TID  Items Itemset  Sup
1 134 a2
zZ 295 @l )
3 1235 B )
4 25 ) :

{5} 3

(x+y) mod 3
T1 {1,3}:2, {1,4}:1, {3,4}:3
T2 {2,3}:1, {2,5}:3, {3,5}:5
T3 {1,2}:4, {1,3}:2, {1,5}:5, {2,3}:1, {2,5}:3, {3,5}:5
T4 {2,5}:3

Step 2: Using the hash function as discussed in step 1 the bucket looks like the one shown below.

Bucket 1 2 3

Count 3




PCY Algorithm

Hash-based Bucket Counting: Reduces candidate pairs using hash mechanism.

Optimal Memory Use: Efficiently uses memory for both item counts and hash table of
pairs.

Candidate Reduction: Minimized computational effort by pruning many item pairs.

Efficient Scanning: Potentially fewer passes needed for subsequent itemsets.



Why consider PCY over Apriori

Memory Efficiency: PCY utilizes available memory more effectively.

Reduced I/0: Fewer database scans save processing time.

Pruned Candidates: Fewer candidate itemsets reduce computational efforts.

Note: Efficacy depends on data distribution and hash function quality.



