Ravi Kumar Gupta https://kravigupta.in

Why we need MapReduce?

- Need to analyse and process
 - Massive amount of data
 - In a short period of time
- If done on a single machine will take huge amount of time

Why we need MapReduce?

- Idea is to divide the work
 - Divide the data into smaller chunks
 - Send it to a cluster of machine
 - Process simultaneously
 - Combine the results after processing
- Achieving parallelism by using several commodity hardware
 - Connected by ethernet or switches.
- Hadoop provides
 - DFS distributed file system
 - Splits the data and sends to all nodes in clusters
 - MapReduce does the computation in parallel

Hadoop - High Level Architecture

Hadoop - High Level Architecture

- Master node
 - NameNode Coordinates and monitors the data storage function
 - JobTracker coordinates the parallel processing of data using MapReduce
- Slave node
 - Runs a DataNode and TaskTracker
 - DataNode Takes instruction from NameNode
 - Does the actual work
 - Stores the data
 - Runs computation on data
- DataNode is a slave to NameNode
- TaskTracker is a slave to JobTracker

More detailed view ..

Distributed File System

Uses Cluster computing

- The new parallel computation architecture
- Compute nodes in range of 8-64 are stored in racks and connected
- Connected by switch or ethernet

Distributed File System

- Failures at a node are taken care by the replication
 - Failure can be node level e.g. disk, cpu
 - Or it can be rack level e.g. network failure, power failure
- All tasks are completed Independently
- Any node can be restarted without affecting computation on other nodes

Distributed File System

- DFS supports access to files stored on remote servers
- Offers replication and local caching
- Concurrent access can be taken care by locking conditions
- Different types of implementations based on complexity of the application.

- What do we mean by Locking Conditions ?
- Mechanisms or rules used by DFS to manage concurrent access.
- Help avoid data inconsistency or corruption
- e.g. Allow multiple clients to read but block writes. Only one client will be able to write at once.

DFS - Google File System

- Google had to store a massive amount of data
- Stored on commodity hardware not so reliable, hence redundant storage
 - Reduced cost because commodity hardware
- Mostly read operations, sometimes append
- Requires large streaming reads
 - High sustained throughput is needed with low latency
- File sizes are in GBs but stored as 64MB chunks with rep factor 3.
- Chunks managed through a single master node
 - Master stores the metadata of these chunks

DFS - Google File System

- Metadata contains
 - File and chunk namespaces
 - Mapping of the file to chunks
 - Locations of the replicas of each chunk
- Master is replicated in a shadow master in case master fails
- Master chooses one of the replicas as primary and delegates the authority for taking care of the data mutation.

DFS – Hadoop Distributed File System

- Very Similar to GFS
- Master is called NameNode
- Shadow Master is called Secondary NameNode
- Chunks are called blocks
- Chunk Server is called DataNode
- DN stores and retrieve blocks and also reports the list of blocks to NN
- No appends like GFS
- Open Source

Organization of Nodes

- Hadoop runs best of Linux
- For smaller clusters where nodes are < 40
 - Single physical server can host both NameNode and JobTracker
- For bigger clusters,
 - Both of them can be on different physical servers
- Server virtualization or hypervisor layer adds to overhead
 - Impedes the Hadoop performance

Case Study Feedbacks Processing

Case Study – Feedbacks Processing

• Purpose –

- A huge file contains feedbacks mails from customers
- Need to find out the number of times when
 - Goods were returned and
 - Refund was requested
- Will help business to measure the performance of a vendor
- This is a word count problem.
- E.g. find the frequency of words refund, return etc.

Feedbacks System – Words of Interest

- Return Requested
 - Returned
 - Return Request
 - Goods Returned
 - Item Returned
 - Damaged
 - Defective
 - Exchange

- Refund Requested
 - Refund
 - Refund requested
 - Refund required
 - Request for refund
 - Cancellation
 - Cancel order
 - Money back

Feedback System - Process

• The big file – Feedback.txt contains all feedback mails

• High Level steps

- Client loads this file in cluster
- Submits a job describing how to analyse this data
- Cluster will process and return a new file Returned.txt
- This file will have the desired result
- The client will read this file.

Processing – a deep dive

- Client breaks the file into three blocks
- For each block, client consults NN and receives a list of 3 DN
- NN provides Rack number, Hostname, port number, ip address etc
- Client writes block directly to the DN
- The receiving DN replicates to another DN and so on..
- Two DN are in the same Rack and one DN in another Rack
 - To avoid data loss in case one rack fails

Processing – Storing and Replication of A Block

- Client initiates TCP connections to DN1
- To DN1 it sends the location of DN2 and DN3
- DN1 initiates TCP to DN2 and sends info about DN3
- DN2 initiates TCP to DN3 and sends info about the client
- On successful replication, "Block Received" report is sent to NN
- "Success" message is also sent to the Client to close TCP connections
- Client informs NN that the block was successfully written
- NN updates its metadata info with the node locations of block A of Feedback.txt
- Client processes another block.

Processing – Metadata and Health Check

- NN not only holds Metadata but also supervise the health of DN
- NN acts as central controller of HDFS
- DN sends heartbeats every 3 seconds
 - TCP connection to port used by NN daemon.
- Every 10th heartbeat, DN sends block report
- Block report contains info about all of the blocks a DN has
- NN ACKs the heartbeat/Block report
- DN acknowledges the ACK

Processing – Role of Secondary NN

- Every hour, by default, secondary NN connects to the NN
- Copies from NN
 - The in-memory metadata information X
 - Files that used to store metadata Y
- X and Y may or may not be in sync
- Secondary NN combines X and Y in a fresh set of files
- Delivers the new set of files to NN
- Keeps a copy for itself.

Processing – Receiving the Output

- When Client wants to retrieve the output of a job
- Client communicates to NN and asks for the block locations of result file
- NN provides a unique list of 3 DN for each block
- Client chooses first DN in the list
- Blocks are read sequentially
- Subsequent blocks are read only after the previous block is read completely.
- NN checks the DN in the same rack to avoid traversing to other switches
- If the data can be retrieved from the same rack, processing can begin soon and job completes faster

Processing – MapReduce

- MapReduce Parallel processing framework
- MapReduce => Map and Reduce
- Map process runs computation on the local block

- In our case, we're counting the occurrence of word Refund
- Let's do one by one First **Map** and then **Reduce**

Processing – The Map Process

- Client submits the MapReduce job to the JobTracker
- JobTracker finds from NN which DN has blocks of Feedback.txt
- JobTracker provides required Java code to execute Map computation to TaskTracker on DN
- TaskTracker starts a Map Task and monitors the progress
- TaskTracker provides Heartbeats and task status back to JobTracker
- As Map task completes on DN, it stores the results of local computation as intermediate data
- This intermediate data is sent over network to a node running Reduce task for final computation

Processing – The Reduce Process

- JobTracker starts a Reduce Task on any one of the nodes
- Instructs Reduce task to go and grab the data from Map Tasks
- Map task may send data simultaneously
- In-Cast of Fan-in can occur
 - A traffic situation where number of nodes sending TCP data to a single node, all at once.
- The network switches have to manage the internal traffic to handle all in-cast conditions
- After collecting the data, final computation phase starts
- Results are written to file Results.txt to HDFS
- Client can read the Results.txt from HDFS
- Job is marked as completed.

Points to Ponder

- Complexity of distributed and concurrent apps makes it harder or more expensive to scale up(vertically)
- Additional resources need to be added to existing node to keep up with data growth
- Hadoop follows scale-out approach
 - More nodes can be added or removed
 - Scale up and down both are easy
- RDBMS also scale up but very expensive
- Code is moved to data, local computation
- Hadoop Defines smaller number of components and well-defined interfaces of interaction between the components
- Allows developers to focus on app and business logic
- No worry about the system level challenges

MapReduce Programming Model

Before MapReduce

edureka!

The Traditional Way

Problems with Traditional way

Critical path problem

- Amount of time taken to finish the job without delaying next milestone
- Or the actual completion date
- If machine delays the job, the project gets delayed

Reliability issue

- What if any of the machine involved fails.
- Failover management is a challenge

Equal Split issue

• Need to split the data so that no individual machine is overloaded or under utilized.

Single split may fail

- Even a single machine could not process and return output, the final outcome may not be valid
- Fault Tolerance needed

Aggregation of result

• Need of a mechanism to aggregate the result from each machine to make a final output

MapReduce Approach

- MapReduce is a programming framework that allows us to perform distributed and parallel processing on large datasets in a distributed environment
- Write code logic without bothering about reliability, fault-tolerance, design issues etc.

MapReduce Advantage

- Works on Divide-and-conquer principle
- Huge amount of input data is split into 64 MB chunks/blocks
- Mappers process this data in parallel
- Mappers exist and run at the same location as data chunks
- Intermediate result is shuffled and sorted
- Output of shuffling and sorting is sent to Reducers
- Mappers and Reducers are written by Programmers (Us).
 - Need to extend the Base Classes provided by Hadoop
 - May need specific implementation depends on the problem in context

$$(k_1, v_1) \stackrel{\operatorname{Map}}{\longrightarrow} \operatorname{list}[(k_2, v_2)] \stackrel{\operatorname{Sort}}{\longrightarrow} \operatorname{list}[(k_2, \operatorname{list}[v_2])] \stackrel{\operatorname{Reduce}}{\longrightarrow} (k_3, v_3)$$

Three steps

- (k1,v1) → list[(k2,v2)]• Map: $list[(k2,v2)] \mapsto list[(k2,list[v2])]$ • Sort: • Reduce:
 - $(k2,list[v2]) \mapsto (k3,v3)$

The Overall MapReduce Word Count Process

edureka!

MapReduce Components

Map Task

- A chunk is a collection of element
- An element can be a tuple, line, document
- All input to Map tasks are key-value pairs
- Map converts to zero or more key-value pairs
- Keys may not be unique
 - It is possible to have same key-value pairs from same element
- Example word count count the words in a line, document etc

Map Task

- If we need to count the words in documents.
- The element here in chunks would be document
- Map function reads the document and breaks into sequence of words
- Each word is counted as one \rightarrow k1, 1
- A word can be repeated hence the keys may not be unique.
- Final output of the Map task would be -
 - (Word1, 1), (word2, 1),.... (wordn, 1)
- This way all of the documents in chunk are processed by Map task.

Grouping By Key

- Grouping is performed by system automatically regardless of what Map or Reduce do.
- Each key from the result of the Map task is hashed
- The key-value pairs are saved in one of the "i" local files.
- "i" => number of reducers to be executed
- To perform the grouping by key, Master controller merges the files from Map tasks.
- Example -
 - Map Tasks output --> (Word1, v1), (word1, v2), ... (word1, vn)
 - Input to Reducer --> (word1, [v1, v2, v3 ... vn])

Reduce Task

- Input to Reducer
 - Key and the associated files [0 (i-1)]
- Each reduce function uses one or more Reducers
- Output of all reducers is merged into a single file
- Output is a sequence of zero or more key-value pairs one for each key
- For word count, reducer will add all of the values in the list
 - Input => word1, [v1, v2, v3.. vn]
 - Output => word1, v
 - Where v => sum(v1, v2, v3... vn)

Combiners

- Reduce function can be both associative and commutative
 - E.g. sum, max, average etc
- Instead of sending all of the mapper output to reducer,
 - Some values are computed at the Map side using Combiners
 - Then sent to Reducer
 - To optimize the input/output operations between Mappers and Reducers
- Example
 - After map task, the word xyz may appear in k times. Then (xyz, 1) will appear k times.
 - This can be grouped as (xyz, k) and then can be send to Reducer

Word Count Exercise

Playing Card – MapReduce Demo

Å ♣		2	+		} •	•	4 . ♣	*	5.♣	+	€ ♣	÷	? ♣	÷	⁸ .♣	÷	9 .	*	* •	*		Q.	K
- Alter	•				4	•			•	þ	*	*	*	* *	*	* *	* *	*	*	*			9 X 5
	i		*	ż	Ť	ż	*	*	*	* <u>¢</u>	*	* ;	*	*	*	*8	*	$*_{6}^{*}$	**	Ťįį́	W ti		**X
A •		2	+		•		4.+	+	5.◆	+	6 ◆	+	?◆	+	8.◆	+	9	•	!.+	•		?•	
	+				•						٠	+	+	*+	*	*	*	*	÷	*		1	
	i		+	t	•	ċ	+	+;	+	♦ t	+	* j	+	+:	•	* 8	+	* 6	+*	+i		* 4 6	
A	10	2	۲				4.♥	۷	5.▲	۲	€♥	•	₹♥	۷	8€	۲	9,♥	•	" ♥ 。	•			
	۲				۲				•		۲	۲	Y	••	*	*	*	*					
	í		٨	2		ŝ	٨	A î	٨	≜ ĝ	٨	\$	٨	1	٨	\$	٠	♠ ₆	•	≜ ĵî			
A •		2 ♠	•	ľ	4	•	4.♠	•	5.₽	•	6♠	٠	7.♠	٠	8≉	•	9.♠	•	!.				K
	¢				4	•			4	•	•	¢	•	* •	↑ ↓	↑ ↓	↑ ⁺ ↓	*	↑ ⁺ ↓ ,	★ ¥			
	i		¥	ż	Ť	ċ	۴	Ťţ		₽ţ	•	∳	۴		¥	₩8	٠	₩6	* *	Ťi			

Map Process

- Map Process runs these computation on blocks
- Client submits MapReduce to JobTracker
- JT provides tasks to TaskTracker with required Java code to execute Map
- TT executes Map Task, monitors, provides heartbeat and status to JT
- After Map task, result of the computation is stored as intermediate data
- The intermediate data is sent to a node running Reducer

Reduce Process

- JobTracker starts a Reduce Task on any one of the nodes
- Instructs Reduce task to go and grab the data from Map Tasks
- Map task may send data simultaneously
- In-Cast of Fan-in can occur
 - A traffic situation where number of nodes sending TCP data to a single node, all at once.
- The network switches have to manage the internal traffic to handle all in-cast conditions
- After collecting the data, final computation phase starts
- Results are written to file Results.txt to HDFS
- Client can read the Results.txt from HDFS
- Job is marked as completed.

MapReduce Execution

Runtime Coordination

- MapReduce handles distributed code execution transparently
- MR takes care of scheduling and synchronization
- MR ensures that job submitted by all of the users get fair share of cluster's execution
- Scheduling optimizations
 - If a machine executes a task very slowly, JT assigns different instance(node) using a different TT
 - It is true for both Map and Reduce part
- Synchronization optimizations
 - Reduce Phase can not start until all Map tasks are completed
 - Shuffling and sorting is done using all of the nodes where Map tasks are executed and where Reduce will be executed

Responsibilities

- Takes care of scheduling, monitoring, and rescheduling of failed tasks
 - Provides overall coordination of execution.
 - Selects nodes for running mappers.
 - Starts and monitors mappers execution.
 - Sorts and shuffles output of mappers.
 - Chooses locations for reducers execution.
 - Delivers the output of mapper to reducer node.
 - Starts and monitors reducers execution.

- Key Components
- Driver
- Input Data
- Mapper
- Shuffle and Sort
- Reducer
- Optimized MapReduce process by using Combiner(optional)
- Distributed Cache

Driver

- Main program that initialize job & get back status of job execution.
- Defines configuration & specification of all components For each job
- Include I/O format

Input Data

- I/p reside in HDFS or Hbase
- InputFormat : defines number of map task in mapping phase
- InputSplit: unit of work task, jobdriver invokes InputFormat to decide numberof (split) & location of map task execution.
- RecordReader: reads data in maper task ,converts data to key,value.

Mapper

• For each map task, mapper is initiated.

Shuffle and Sort

- Process of moving mappers output to reducer
- It is triggered when mapper completes its task
- Grouping is performed regardless what mapper, reducer does, Pairing with same key is grouped & passed to single reducer

Reducer

- Executes user-define code
- Reduce method receive the key
- Record writer is used for storing data in specified location

Optimization using combiners [Optional]

• Combiner takes the input and combines the value with same key to reduce the number of keys

Distributed Cache

- Resource used globally by all nodes in cluster.
- Can be shared library that each task can access.
- User code (driver, mapper, reducer) jar file can be placed in cache .

Process Pipeline

- JobDriver uses InputFormat to partition a map's execution & initiates a JobClient.
- Job Client communicates with JobTracker and submits the job for execution.
- JobTracker creates one Map task for each split as well as a set of Reducer tasks
- TaskTracker that is present on every node of cluster, controls the actual execution.
- Once TT starts the Map job, periodically send heartbeat to JT, indicates its ready to accept job.
- JT uses scheduler to allocate task to TT uses the info from heartbeat
- TT copies the job files, files needed for execution, and creates a child process.
- Child process informs the TT every few seconds with the status
- TT informs the JT as soon the last job is completed and JT changes job status to complete
- By periodically polling JT, JobClient recognizes the job status.

Coping with Node Failure

- MapReduce job are submitted and tracked by JobTracker
- Only one JobTracker for a Hadoop Cluster and runs on its own JVM
- All slave node are configured with JT node location
- If JT fails, all job are halted. & restarted again.
- JT monitors all TT so if a TT fails JT detects failure.
- All tasks of a failing TT node are restarted
- Even if some task is completed it must be redone, since the output of reducer(at the failing node) would be unavailable
- JT informs all Reducer tasks that the input to Reducer will be available from the new location
- If failure at Reducer, then JT sets it to idle & reschedules the reducer task in another node.

Algorithms using MapReduce

Algorithm using MapReduce

Use Cases for MapReduce

- Ideal for data-intensive computations
- Well-suited for analytics, like identifying similar buying patterns

When Not to Use

- Not suitable for real-time, transactional tasks like online retail
- Processes involving little calculations
- Examples where MapReduce can be used
 - To solve analytic queries on large amount of data
 - Relation Algebra operations
- Google implemented MapReduce
 - Large matrix-vector multiplications for its PageRank

Algorithm using MapReduce

- MapReduce Program
- Three components
 - Driver
 - Initializes the job configuration
 - Defines the mapper and reducer for the job
 - Specifies the path for input and output files
 - Mapper and Reducer
 - Extends classes from org.apache.hadoop.mapreduce
 - https://hadoop.apache.org/docs/r2.7.3/api/org/apache/hadoop/mapreduce/pa ckage-summary.html

- Mapper and Reducer classes are generic types
- Users can specify the types for input/output keys and values.
- Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
- Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
- Types
 - KEYIN The type of the input key
 - VALUEIN The type of the input value
 - KEYOUT The type of the output key
 - KEYOUT The type of the output value

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
 // Mapper implementation here

public class WordCountReducer extends Reducer< Text, IntWritable, Text, IntWritable > {
 // Reducer implementation here

- Types
 - KEYIN The type of the input key
 - VALUEIN The type of the input value
 - KEYOUT The type of the output key
 - KEYOUT The type of the output value

- LongWritable
- \rightarrow long value

- Text - Text
- IntWritable → integer value

- Mapper and Reducer implementations are classes.
- Actual functions doing the job are usually map() and reduce().

```
public class TokenCounterMapper extends Mapper<Object, Text, Text, IntWritable>{
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        StringTokenizer itr = new StringTokenizer(value.toString());
        while (itr.hasMoreTokens()) {
            word.set(itr.nextToken());
            context.write(word, one);
        }
    }
}
```

• The **Key** is a generic type parameter

}

• Provides flexibility by allowing the reducer to operate on any key type

public class IntSumReducer<Key> extends Reducer<Key, IntWritable, Key, IntWritable> {
 private IntWritable result = new IntWritable();

```
public void reduce(Key key, Iterable<IntWritable> values, Context context)
        throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable val : values) {
        sum += val.get();
    }
    result.set(sum);
    context.write(key, result);
}
```

- Map function is
 - map (*InputKeyType* inputKey, *InputValueType* inputValue):
 - Process the *inputKey* and *inputValue*
 - Result will be *intermediateKey*, *intermediateValue* pair
 - Emit(intermediateKey, intermediateValue);
 - map can emit more than one intermediate key–value pairs

- Reduce function is
 - reduce (*IntermediateKeyType* intermediateKey, *Iterator* values):
 - All the values for a particular intermediateKey is first iterated
 - A user-defined operation is performed over the values.
 - The number of reducers is specified by the user
 - Reducers run in parallel
 - *outputValue* will contain the value that is output for that *outputKey*
 - Emit(outputKey, outputValue);
 - reduce() method can emit more than one output key-value pairs

=23

- Let's say we have a matrix A and a vector x
- A multiply by x
- 1.First row: (1×7)+(2×8) =7+16
- 2.Second row:

3.Third row:

 $(3\times7)+(4\times8) = 21+32 = 53$ $(5\times7)+(6\times8) = 35+48 = 83$

$$A=egin{pmatrix} 1&2\3&4\5&6 \end{pmatrix}, x=egin{pmatrix} 7\8 \end{pmatrix}$$

$$b = egin{pmatrix} 23 \ 53 \ 83 \end{pmatrix}$$

- Using MapReduce
- Let's consider matrices A (L x M) and B(M x N)
- L = 2, M = 3, N = 2

$$A = egin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{pmatrix}, B = egin{pmatrix} 7 & 8 \ 9 & 10 \ 11 & 12 \end{pmatrix}$$

• Map Phase

For each element (i,j) of I, emit ((i,k), A[i,j]) for k in 1,...,N. For each element (j,k) of B, emit ((i,k), B[j,k]) for i in 1,...,L.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{pmatrix}$$

1. Map for Matrix A:

- * For element A[1,1]=1 , emit ((1,1),1),((1,2),1)
- * For element A[1,2]=2, emit ((1,1),2),((1,2),2)
- * For element A[1,3]=3 , emit ((1,1),3),((1,2),3)
- * For element A[2,1]=4, emit ((2,1),4),((2,2),4)
- * For element A[2,2]=5, emit ((2,1),5),((2,2),5)
- * For element A[2,3]=6, emit ((2,1),6),((2,2),6)
- 2. Map for Matrix B:
 - * For element B[1,1]=7, emit ((1,1),7),((2,1),7)
 - * For element B[1,2]=8, emit ((1,2),8),((2,2),8)
 - * For element B[2,1]=9, emit ((1,1),9),((2,1),9)
 - * For element B[2,2]=10, emit ((1,2),10),((2,2),10)
 - + For element B[3,1] = 11, emit ((1,1),11), ((2,1),11)
 - For element B[3,2] = 12, emit ((1,2),12), ((2,2),12)

- Reduce Phase
- key = (*i*,*k*)
- value = Sumj (A[i,j] * B[j,k])
- One reducer is used per output cell
- Each reducer calculates Sumj (A[i,j] * B[j,k])

- First let's see how to calculate \rightarrow C[1,1]
- Emitted key value pairs for C[1,1] are =
 - ((1,1),1), ((1,1),2), ((1,1),3), ((1,1),7), ((1,1),9), ((1,1),11)
- $C[1,1] = A[1,1] \times B[1,1]$ + $A[1,2] \times B[2,1]$ + $A[1,3] \times B[3,1]$
- $C[1,1] = 1 \times 7 + 2 \times 9 + 3 \times 11$
- Similarly, we calculate other values for C

MapReduce and Relational Operators

Shuffle/Sort Handles Grouping

- Shuffle and Sort phases automatically take care of sorting and grouping the intermediate key-value pairs emitted by the mappers
- This can be compared with GROUP BY operation in an SQL Query

UserID	I	AmountSpent
	- -	
1	I	10
2	I	20
1	I	30
3	I	40
1	I	50
3		60

SELECT UserID, SUM(AmountSpent) FROM Transactions GROUP BY UserID;

Map Output: (1, 10), (2, 20), (1, 30), (3, 40), (1, 50), (3, 60)

Sorted/Grouped Output: (1, [10, 30, 50]), (2, [20]), (3, [40, 60])

Reduce Output: (1, 90), (2, 20), (3, 100)

MapReduce and Relational Operators

Following operation are performed either at Mapper or Reducer

Selection

• SELECT * FROM Employees WHERE Salary > 50000;

Projection

• SELECT FirstName, LastName FROM Employees;

Union, Intersection, and Difference

- SELECT City FROM Table1 UNION SELECT City FROM Table2;
- SELECT City FROM Table1 INTERSECT SELECT City FROM Table2;
- SELECT City FROM Table1 EXCEPT SELECT City FROM Table2;

Natural Join

• SELECT * FROM Orders NATURAL JOIN Customers;

Grouping and Aggregation

- SELECT Department, COUNT(*) FROM Employees GROUP BY Department;
- SELECT Department, AVG(Salary) FROM Employees GROUP BY Department;
Following operation are performed either at Mapper or Reducer

Selection

- SELECT * FROM Employees WHERE Salary > 50000;
- Filter rows based on some criteria
- Can be done either at Mapper or Reducer

Projection

Union, Intersection, and Difference

Natural Join

Following operation are performed either at Mapper or Reducer

Selection

Projection

- SELECT FirstName, LastName FROM Employees;
- Selects Columns from Database, Like the SQL SELECT statement
- Usually done at the Mapper side
- Why at Mapper?

Union, Intersection, and Difference

Natural Join

Following operation are performed either at Mapper or Reducer

Selection Projection Union, Intersection, and Difference • SELECT City FROM Table1 UNION SELECT City FROM Table2;

- Combines Multiple Datasets/tables
- In simple words, and with respect to SQL, adds the data from two tables
- SELECT City FROM Table1 INTERSECT SELECT City FROM Table2;
- Finds the intersection of two tables
- SELECT City FROM Table1 EXCEPT SELECT City FROM Table2;
- Finds element from one table which are not part of another table
- Performed at either Mapper or Reducer

Natural Join

Following operation are performed either at Mapper or Reducer

Selection
Projection
Union, Intersection, and Difference
Natural Join
 SELECT * FROM Orders NATURAL JOIN Customers; Combines two or more tables on a related column Can be done in multiple ways – map side join, reduce side join
Grouping and Aggregation

- SELECT Department, COUNT(*) FROM Employees GROUP BY Department;
 SELECT Department, AVG(Selem), FROM Employees GROUP BY Department;
- SELECT Department, AVG(Salary) FROM Employees GROUP BY Department;
- Involves grouping the data and then performing some calculations e.g. sum, average etc.
- Aggregation is done on each group
- Often done in reducer, benefitting from the automatic sorting and grouping done in shuffle and sort phase

Join Strategies

Reduce Side Join

- Reducer performs the Join Operation
- Mapper outputs the pairs with Join Key
- Shuffle phase ensures that all related records are sent to same Reducer.

Map Side Join

- Mapper performs the join operation
- By loading smaller dataset into memory

In-Memory Join

- These are specialized map-side joins where data is pre-loaded into memory for faster access
- Two Variants
- Striped Variant Stores the smaller table in an efficient in-memory data structure e.g. hash table.
- So that the mapper can quickly perform the join
- Memcached Variant Stores data in external in-memory key-value store such as Memcached
- To hold a smaller table for very fast lookups during the map phase

Computing Selections

- Selections may not need both mapper and reducer
- Mostly can be done in Map part only
- Ex. SELECT * FROM Employees WHERE Salary > 60000;
- Map function
 - Takes each tuple t in relation R and checks if it meets a given condition C (e.g., Salary>60000).
 - If yes, emits a key-value pair as (t, t) where both key and value are tuple t
- Reduce function
 - An identity function does not modify the data
 - Simply passes each key-value pair as received to the output

Pseudo Code for Selection

map(key, value):
 for tuple in value:
 if tuple satisfies C:
 emit(tuple, tuple)
reduce(key, values):
 emit(key, key)

Computing Selections

Мар

- Acts as a filter.
- If R = {(1,2), (3,4), (5,6)}
- And condition is first element is >=3
- Then output would be -
 - ((3,4), (3,4)), ((5,6),(5,6))

Reduce

- Does not modify anything Identity function
- Input ((3,4), (3,4)), ((5,6),(5,6))
- Output same as input ((3,4), (3,4)), ((5,6),(5,6))
- Because the filtering has already happened in Map.

Pseudo Code for Selection

map(key, value):
 for tuple in value:
 if tuple satisfies C:
 emit(tuple, tuple)
reduce(key, values):
 emit(key, key)

Computing Projections

- Ex. SELECT name, department FROM Employees;
- Projection may result in duplicate tuples
- Reduce fn is used to remove duplicates
- Map function
 - Goal is to eliminate unwanted columns
 - For each tuple t in relation R
 - Construct a tuple ts with only those components which are needed
 - E.g. only keep name and department from all columns
 - Emit (ts, ts)
- Let t = (a,b,c), S = {a,c}, then ts = {a,c}
- R = {(1,2,3),(4,5,6)}, S = {1,3}
- Map output => ts = ((1,3),(1,3)), ((4,6),(4,6))

```
Pseudo Code for Projection
map(key, value):
  for tuple in value:
    ts = tuple with only the components for the attributes in S
    emit(ts, ts)
reduce(key, values):
    emit(key, key)
```

Computing Projections

Duplicates after Map Output

Projection

• S={ a, c }

Map output

- For the first row (1,2,3), the output would be ((1,3),(1,3))
- For the second row (4,5,6), the output would be ((4,6),(4,6))
- For the third row (1,7,3), the output would again be ((1,3),(1,3))

Final output ->

- ((1,3),(1,3)), ((4,6),(4,6)), ((1,3),(1,3)) ---
- ((1,3),[(1,3),(1,3)]), ((4,6),[(4,6)])

Given Relation R			
a	b	c	
1	2	3	
4	5	6	
1	7	3	

Computing Projections

- Reduce function
 - For each key ts, there will be one or more key-value pairs (ts, ts).
 - Reduce turns [ts,ts,ts,...,ts] into (ts,ts)
 - Produces exactly one pair (ts,ts) for key ts
- Let t = (a,b,c), S = {a,c}, then ts = {a,c}
- $R = \{(1,2,3), (1,4,3), (4,5,6)\}, S = \{1,3\}$
- Map output => ts = ((1,3),(1,3)), ((4,6),(4,6)), ((1,3),(1,3))
- Reduce output => ((1,3),(1,3)), ((4,6),(4,6))

```
Pseudo Code for Projection
map(key, value):
   for tuple in value:
      ts = tuple with only the components for the attributes in S
      emit(ts, ts)
reduce(key, values):
   emit(key, key)
```

Union Operation

- Union is done between two relations R and S
- For Union, both R and S should have same schema
- Map function
 - Map fn is given chunk(tuples here) of Relation R or S
 - Simply turns each tuple t into key-value pair (t,t)
 - Emit (t, t)
 - No processing on data is done by Map function
- Reduce function
 - Ensures that duplicates are removed
 - Emit (t,t)

Pseudo Code for Union

map(key, value):
 for tuple in value:
 emit(tuple, tuple)
 reduce(key, values):

emit(key, key)

Union Operation

- $R = \{(1,2), (3,4)\}$
- $S = \{(3,4), (5,6)\}$
- Map output
 - (1,2) <u>-></u> (1,2),(1,2)
 - (3,4) <u>-></u> (3,4),(3,4)
 - $(3,4) \rightarrow (3,4), (3,4)$
 - (5,6) <u>-></u> (5,6),(5,6)
- Input to Reduce
 - (1,2),[(1,2)]
 - (3,4),[(3,4),(3,4)]
 - (5.6), [(5.6)]
- Reduce output
 - (1,2),[(1,2)]

 - (5,6), [(5,6)]
 - <u>-></u> Output (1,2),(1,2) • (3,4),[(3,4),(3,4)] <u>-></u> Output (3,4),(3,4)
 - <u>-></u> Output (5,6),(5,6)
 - Final output => {(1,2),(3,4),(5,6)}

Pseudo Code for Union

map(key, value): for tuple in value: emit(tuple, tuple) reduce(key, values):

emit(key, key)

Intersection Operation

- Intersection is done between two relations R and S
- Both R and S should have same schema
- Map function
 - Map fn is given tuples of Relations R or S
 - Simply turns each tuple t into key-value pair (t,t)
 - Emit (t, t)
- Reduce function
 - If a key t has value list as [t,t], which means that it exists in both R and S
 - If yes, then outputs single key value pair (t,t)
 - If a key t has single value as [t], then no output.
 - Emit (t,t) if tuple t exists in both R and S
 - otherwise no output

Pseudo Code for Intersection

map(key, value): for tuple in value: emit(tuple, tuple) reduce(key, values): if values == [key, key] emit(key, key)

Intersection Operation

- Let R={(1,2),(3,4)} and S={(3,4),(5,6)}
- Map output
 - (1,2) -> (1,2),(1,2)
 - (3,4) -> (3,4),(3,4)
 - (3,4) -> (3,4),(3,4)
 - (5,6) -> (5,6),(5,6)
- Input to Reduce
 - (1,2),[(1,2)]
 - (3,4),[(3,4),(3,4)]
 - (5,6),[(5,6)]
- Reduce
 - (1,2),[(1,2)]
 - (3,4),[(3,4),(3,4)]
 - (5,6),[(5,6)]
- Final output
 - {(3,4)}

- -> Output nothing
- -> Output (3,4),(3,4)
- -> Output nothing

Pseudo Code for Intersection

map(key, value): for tuple in value: emit(tuple, tuple) reduce(key, values): if values == [key, key] emit(key, key)

Difference Operation

- Difference is done between two relations R and S
- Both R and S should have same schema
- We're trying to do (R S)
- Map function
 - Map fn is given chunk(tuples) of Relations
 - Simply turns each tuple t into key-value pair (t,Rname) or (t, Sname)
 - Rname and Sname here are names of the relations R and S respectively
 - Emit (t, Rname)
 - Can also be written as Emit(t,R)
 - Meaning that a tuple t was found in R
- Reduce function
 - Receives inputs as (t,[R]), (t,[R,S]), or (t,[S])
 - We are interested in only those tuples which were part of R and not S

Pseudo Code for Difference

map(key, value): if key == R: for tuple in value: emit(tuple, R) else: for tuple in value: emit(tuple, S) reduce(key, values):

> if values == [R] emit(key, key)

Difference Operation

- R={1,2,3,4}
- S={3,4,5}

Мар

- (1,R),(2,R),(3,R),(4,R),(3,S),(4,S),(5,S) Input to Reduce
- 1:[R], 2:[R], 3:[R,S], 4:[R,S], 5:[S] Reduce
- For 1:[R] and 2:[R], it emits (1,1) and (2,2)
- For 3:[R,S] and 4:[R,S], it emits nothing
- For 5:[S], it also emits nothing Final output –
- $R-S \implies \{(1,1), (2,2)\}$

map(key, value): if key == R: for tuple in value: emit(tuple, R)

Pseudo Code for Difference

```
else:
```

for tuple in value: emit(tuple, S)

```
reduce(key, values):
if values == [R]
emit(key, key)
```

Natural Join

- Relations R(A,B) and S(B,C)
- For natural join it is required to find tuples that agree on their B component.
 - Second component from R and first component from S
- Map
 - For each tuple (a,b) in R, produce the key-value pair (b,(R,a))
 - For each tuple (b,c) in S, produce the key-value pair (b,(S,c))
- Reduce
 - For each key b, if there are pairs or R and S as (R,a) and (S, c) then Emit (a,b,c)

```
Pseudo Code for Natural Join
```

```
map(key, value):

if key == R:

for (a, b) in value:

emit(b, (R, a))

else:
```

for (b, c) in value:

emit(b, (S, c))

Natural Join

- Let R(A,B)={(1,2),(2,3),(3,4)}
- Let S(B,C)={(2,7),(4,9),(3,8)}
- Map
 - For each tuple (a,b) in R, produce the key-value pair (b,(R,a))
 - For each tuple (b,c) in S, produce the key-value pair (b,(S,c))
 - Output => 2:(R,1), 3:(R,2), 4:(R,3), 2:(S,7), 4:(S,9), 3:(S,8)
- Grouping For Reduce function Grouping by the key b
 - 2:[(R,1),(S,7)],
 - 3:[(R,2),(S,8)],
 - 4:[(R,3),(S,9)]
- Reduce
 - For each key b, if there are pairs or R and S as (R,a) and (S, c) then Emit (a,b,c)
 - 2:[(R,1),(S,7)] produces (1,2,7)
 - 3:[(R,2),(S,8)] produces (2,3,8)
 - 4:[(R,3),(S,9)] produces (3,4,9)
 - Final output => (1,2,7),(2,3,8),(3,4,9)

Grouping and Aggregation

- Can be performed in one MapReduce Job
- Mapper extracts each tuple values to "group by and aggregate" and emits them
- Reducer receives values to be aggregated that are already grouped
- Reducer calculates an aggregation function

Example

- $R(A,B,C) => \{(1,2,3),(1,4,7),(2,3,1),(2,5,8),(3,1,2),(3,6,3)\}$
- Map: For each tuple(a,b,c), emit (a,b) => 1:2, 1:4, 2:3, 2:5, 3:1, 3:6
- Grouping for reduce: Key value pairs are grouped by their key a => 1: [2,4], 2: [3,5], 3: [1,6]
- Reduce: if aggregate fn is Sum then => 1: 6, 2: 8, 3: 7 ||| 1:2+4, 2: 3+5, 3: 1+6
 - Final output would be => {(1,6),(2,8),(3,7)}
- Reduce: if aggregate fn is Max then => 1: 4, 2: 5, 3: 6
 - Final output would be => {(1,4),(2,5),(3,6)}

Pseudo Code for Grouping and Aggregation

map(key, value):
 for (a, b, c) in value:
 emit(a, b)
reduce(key, values):
 emit(key, theta(values))

- In case there are multiple aggregations
- Reduce function applies each aggregation to the list of values
- Produces a tuple consisting of the key, including components for all grouping attributes
- Followed by the results of each of the aggregation
- Example : R(A,B,C,D), Group by A and B, then apply theta1(C) and theta2(D)

Mapper output might look like:	Shuffle and Sort Phase	Reducer Phase
$(a_1,b_1):(c_1,d_1),$		
$(a_1,b_1):(c_2,d_2),$	$(a_1,b_1): [(c_1,d_1),(c_2,d_2)],$	$(a_1,b_1):(\mathrm{SUM}(c_1+c_2),\mathrm{MAX}(d_1,d_2)),$
$(a_2,b_2):(c_3,d_3),$	$(a_2,b_2):[(c_3,d_3),(c_4,d_4)],$	$(a_2,b_2):(\mathrm{SUM}(c_3+c_4),\mathrm{MAX}(d_3,d_4)),$
$(a_2,b_2):(c_4,d_4),$	$(a_3,b_3):[(c_5,d_5)]$	$(a_3,b_3):(\operatorname{SUM}(c_5),\operatorname{MAX}(d_5))$
$(a_3,b_3):(c_5,d_5)$		

Grouping and Aggregation

- If necessary, multiple rounds of MapReduce could be applied
- Especially for more complex aggregation and transformation requirements

• If multiple aggregations are to be performed on same values, then output pair might look like -

 $(a_1,b_1):(\mathrm{SUM}(c_1+c_2),\mathrm{MAX}(c_1,c_2))$

MapReduce Job Structure

• Consider two MapReduce Jobs for Block Multiplication and Summing up the results

Job 1: Block Multiplications

- Mappers:
 - Distribute blocks of data to the reducers.
 - Use a carefully chosen intermediate key structure.
 - Key comparator and partitioning functions help in distributing data efficiently.
- Reducers:
 - Perform the block multiplications.

Performance Characteristics and Trade-offs

- Block multiplication tasks can be assigned to reducers in different ways.
- Each method has its own performance characteristics and trade-offs.
- Choose the method that best fits the performance requirements.

Job 2: Summing Up Results

- Mappers:
 - Distribute the multiplication results to the reducers.
 - Similar key structure and partitioning used as in Job 1.
- Reducers:
 - Sum up the multiplication results.

Block Multiplication

Block Multiplication

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \quad A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \quad B = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{13} & b_{14} & b_$$

$$C1 = \left[egin{array}{ccc} a_{11} & a_{12} \ a_{21} & a_{22} \end{array}
ight] imes \left[egin{array}{ccc} b_{11} & b_{12} \ b_{21} & b_{22} \end{array}
ight] ext{ } C1 = \left[egin{array}{ccc} c1_{11} & c1_{12} \ c1_{21} & c1_{22} \end{array}
ight]$$

Block Multiplication

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ \hline 9 & 10 & 11 & 12 \end{bmatrix} \quad C1 = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix} \times \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 12 & 12 \end{bmatrix}$$
$$B = \begin{bmatrix} 2 & 0 & | 1 \\ 1 & 2 & 1 \\ \hline 1 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} \quad C2 = \begin{bmatrix} 9 & 10 \end{bmatrix} \times \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 18 & 20 \end{bmatrix}$$
$$C3 = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 11 & 5 \end{bmatrix}$$
$$C4 = \begin{bmatrix} 9 & 10 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 19 & 9 \end{bmatrix}$$