
NoSQL
• Ravi Kumar Gupta
• https://kravigupta.in

Agenda
• MongoDB Installation
• NodeJS Installation
• Generating Data into MongoDB
• Mongo Shell
• Accessing DB

Software Needed
• Mongodb
• NodeJs
• NodeJs Scripts
• https://kravigupta.in/bda_slides/mongo-load-gen.zip

https://kravigupta.in/bda_slides/mongo-load-gen.zip

NodeJS
Installation –
Additional tools

NodeJS
Installation

NodeJS
Installation

RDBMS vs NoSQL

Feature RDBMS NoSQL

Data Model Tabular, with fixed schema Flexible, schema-less or with dynamic
schema

Scalability Vertical (scaling up) Horizontal (scaling out)

Consistency Model Strong consistency (ACID) Eventual consistency (BASE)

Transaction Support Full ACID transactions Limited or no ACID transactions

Query Language SQL (Standardized) Varies by system (e.g., MongoDB Query)

Performance Optimized for complex queries Optimized for read/write at scale

Relationships Strong support for relationships (joins) Limited or no support for complex joins

Maturity & Community Mature, with extensive community
support Newer, with growing community support

Security Features Generally robust Can vary widely between systems

Use Case Complex business applications, analytics Big data, real-time applications, IoT

RDBMS vs NoSQL

RDBMS: Relational databases are based on a fixed schema with tables, columns, and
relationships. They offer strong consistency and are suitable for applications
requiring complex queries and transactions.

NoSQL: NoSQL databases are more flexible, offering various data models like key-
value, document, column-family, or graph. They are designed for horizontal
scalability and are often used in scenarios where data is massive or rapidly changing.

ACID
Atomicity

•Transactions are all-or-
nothing.

• If one part fails, the
entire transaction fails,
and the database state
is left unchanged.

•Example: Bank transfer
between two accounts.

Consistency

•Ensures that the
database remains in a
consistent state before
and after the
transaction.

•Enforces constraints,
cascades, triggers, etc.

•Example: Enforcing a
unique constraint on
an email field.

Isolation

•Concurrent
transactions are
executed in isolation
from each other.

•Ensures that the
concurrent execution
of transactions results
in a system state that
would be obtained if
transactions were
executed serially.

•Example: Isolating a
report generation from
an ongoing data
update.

Durability

•Once committed, the
results of a transaction
are permanent.

•Survives system
failures.

•Example: Writing
transaction logs to a
disk to recover from
crashes.

CAP Theorem

•Consistency

•Availability

•Partition Tolerance
• Also known as Brewer’s theorem

CAP Theorem

• CAP theorem for NoSQL states that there are three basic requirements which exist
in a special relation when designing applications for a distributed architecture.

• Consistency - This means that the data in the database remains consistent after the
execution of an operation. Ex. after an update operation all clients see the same
data.
• Availability - This means that the system is always on (service guarantee

availability), no downtime.
• Partition Tolerance - This means that the system continues to function even when

the communication among the servers is unreliable, i.e. the servers may be
partitioned into multiple groups that cannot communicate with one another.

CAP Theorem
• Theoretically, it is impossible to fulfil all 3 requirements.
• CAP provides the basic requirements for a distributed system to follow 2 of the 3

requirements.
• Therefore, all the current NoSQL database follow the different combinations of the C, A,

P from the CAP theorem.

• CA - Single site cluster, therefore all nodes are always in contact. When a partition
occurs, the system blocks.

• CP -Some data may not be accessible, but the rest is still consistent/accurate.
• AP - System is still available under partitioning, but some of the data returned may be

inaccurate.

CAP
Theorem

CAP Theorem

BASE Properties of NoSQL
• Basically Available

• System responds to all requests but without guarantee of being up-to-date.
• Example: Amazon DynamoDB with eventual consistency.

• Soft State
• The state of the system may change over time, even without input.
• Reflects the flexible nature of the system.
• Example: Temporary inconsistencies in a distributed cache like Memcached.

• Eventually Consistent
• Given enough time, the system will become consistent.
• Given that system does not receive input during that time
• Example: Eventual consistency in Apache Cassandra.

NoSQL Business Drivers

• Demands of following play a key
role in emergence of NoSQL
solutions

1. Volume
2. Velocity
3. Variability
4. Agility

Desirable Features of
NoSQL

• 24x7 Data availability
• Location transparency | Location independence
• Schema-less data model
• Modern day transaction analysis
• Architecture that suits big data
• Analytics and business intelligence

Big Data Architecture Considerations

SCALE OF DATA
SOURCES

SPEED IS ESSENTIAL CHANGE IN
STORAGE MODELS

MULTIPLE
COMPUTE MODELS

A sample
architecture

Types of NoSQL
Data Stores

• Key-value store
• Column Store
• Document Store
• Graph Store

NoSQL Classification
• Data Model

1. Key-Value Store
2. Column Family Store
3. Document Store
4. Graph Store

• Properties (Consistency/Availability/ Partition Tolerance-Trade-Off)
1. CAP (but not all three at once!)
2. AP tolerant
3. CP tolerant
4. CA tolerant

Key Value Store

Key-Value Store
• Designed to handle huge amounts of data.

• Based on Amazon’s Dynamo paper.

• Key value stores allow developer to store schema-less data.
• In the key-value storage, database stores data as hash table where each key is unique and the

value can be string, JSON, BLOB (Binary Large OBject) etc.
e.g. a key-value pair might consist of a key like “College_Name" that is associated with a value like
“DBIT".

• Can be used as collections, dictionaries, associative arrays
• Follow the 'Availability' and 'Partition' aspects of CAP theorem.

• Work well for shopping cart contents, or individual values like color schemes, a landing page URI,
or a default account number

Key Value Store

Key Value Store

• A table with two columns and a simple
interface
• Add a key-value
• For this key, give me the value
• Delete a key

• Blazingly fast and easy to scale (no
joins)

Key Value Store

• Copyright Kelly-McCreary & Associates, LLC

Key Value Store
• Schema less format
• Key is auto generated ,value can be string JSON, BLOB
• Key could be web page, file path, image name, SQL Query
• Key –value uses hash table, with unique key and pointer to data .
• Bucket is logical group of key, different bucket can have identical key
• Real key is a hash (bucket + key)
• Cache mechanism improves the performance

v Client can read/write values Getkey(fetch key),
v Putkey (associate value with key),
v Multigetkey(fetch list associated with numerous key),
v Deletekey(remove key)
• Disadvantage : Consistency impossible, as volume increase difficult to maintain unique key

Key Value Store

Rules:
• Distinct key: All key are distinct
• No query on values: no query can be performed on values of table

l In general, key-value stores have no query language.
l They provide a way to store, retrieve and update data using simple get,

put and delete commands;
l The path to retrieve data is a direct request to the object in memory or on disk.

Example - Redis

• Open source in-memory key-value store with optional durability
• Focus on high-speed reads and writes of common data structures to

RAM
• Allows simple lists, sets and hashes to be stored within the value and

manipulated
l In-memory database (IMDB, also main memory database)

l Database management system that primarily relies on main memory for
computer data storage.

l Faster than disk-optimized databases because disk access is slower than memory
access

Example - Redis
• Main memory databases store data on volatile memory devices.
l These devices lose all stored information when the device loses power or is reset.

l Lacks support for the "durability" portion of the ACID
l Supports atomicity, consistency and isolation of ACID

Amazon DynamoDB
• Based around scalable key-value store
• Fastest growing product in Amazon's history
• SSD only database service
• Stored in 3 geographical regions
• Focus on throughput not storage and predictable read and write times
• Strong integration with S3 and Elastic MapReduce

Amazon DynamoDB
• An Item is composed of a primary or composite key and a flexible number of attributes.
l No explicit limitation on the number of attributes associated with an individual item

l But the aggregate size of an item, including all the attribute names and attribute values,
cannot exceed 400 KB.

l A table is a collection of data items, just as a table in a relational database is a collection
of rows.

l Each table can have an infinite number of data items.
l Fully managed, multi-region, multi-active, durable database
l DynamoDB can handle more than 10 trillion requests per day and can support peaks of

more than 20 million requests per second.

Amazon DynamoDB

Amazon DynamoDB

RDBMS way

Single Table Design

Single Table Design

DynamoDB Way
• Reasons for using single table

• To retrieve multiple,
heterogeneous items

• In a single requests

Limitations of Key Store DB
• Good for only OLTP
• Bad for OLAP
• Only key can be queried

• All values are obtained together
• General SQL type queries can not be performed
• Work around the Availability and Partition
• Lacks in Consistency

Key features of Key-Value Store [in DynamoDB]

• Scalable
• Flexible
• Distributed horizontally
• Efficient Indexing
• Strong consistency, Atomic counters
• Secure
• Resource consumption monitoring
• MapReduce Integration – with Amazon Elastic MapReduce

Column Family Store /
Wide Column Store

Column Family Store / Wide Column Store

• Instead of storing data in rows,
• Stores data tables as section of column of data
• A relational database is optimized for storing rows of data, typically for transactional

applications
• Important factor in analytic query performance
• Drastically reduces the overall disk I/O requirements and reduces the amount of data you

need to load from disk.

Column Family Store / Wide Column Store

• Column Stores
• Not like relational database
• Multi-dimensional map
• Not all entries are relevant each time (Column families)

• Example
• Google BigTable
• Cassandra
• Hbase

Row-oriented systems

Column-oriented systems

Apache Cassandra

• Keyspaces
• Tables inside
• Primary key as – Partition key
• Ordering Columns

CREATE TABLE IF NOT EXISTS employees (
 department_id UUID,
 joiningDate TIMESTAMP,
 id UUID,
 name TEXT,
 position TEXT,
 salary DECIMAL,
 PRIMARY KEY (department_id, joiningDate, id)
);

Column Store concepts
• Preserve the table-structure familiar to RDBMS systems
• Not optimized for "joins"
• One row could have millions of columns but the data can be very "sparse"
• Ideal for high-variability data sets
• Colum families allow to query all columns that have a specific property or properties
• Allow new columns to be inserted without doing an "alter table"
• Trigger new columns on inserts

Column Families

• Group columns into "Column families"

• Group column families into "Super-Columns"

• Be able to query all columns with a family or super
family

• Similar data grouped together to improve speed

Disadvantages of Column Family stores

• Updates
• Updating column family requires accessing different blocks in the disk; whereas for

row based approach in single block itself all columns can be updated
• So Updates slower

• If Multiple attributes queried, then slower

• Columnar: Good for OLAP, Bad for OLTP

Document Store

• Mongodb

Graph Store
• Ideal when relationships between data is key:

• e.g. Social Networks

• Used when the relationship and relationships types between
items are critical

• Used for Social networking queries: "friends of my friends"

• Pros: fast network search, works with public linked data sets
• Cons: Poor scalability when graphs don't fit into RAM,

specialized query languages

Graph Store
• Nodes are Joined to create graphs

Graph Store – Neo4j
• Neo4j has CQL, Cypher query language much like SQL.
• Supports Neo4j Data Browser is the UI to execute CQL Commands.
• It supports

• Indexes by using Apache Lucence.
• UNIQUE constraints.
• ACID properties of RDBMS.

• It uses Native Graph Processing Engine to store graphs.
• It can export query data to JSON and XLS format.
• It provides REST API to Java, Scala, etc.
• Disk-based (not just RAM)

