

Big Data Analytics

- Ravi Kumar Gupta
- https://kravigupta.in

Big Data challenges [Recap]

- Data Quality
- Cost
- Data integration
- Storage and processing
- Data Security and Privacy
- Data Analysis and Interpretation
- Real time analysis
- Data Governance

Big Data challenges [Recap]

Problem Statement

Process big data with reasonable cost and time?

Reading and Processing Time

Reading the Data – Sequential, Single Node

- General Hard Disks support up to 100MBPS
- SSD supports up to ~700 MBPS

- Data to Read 10 TB
- SSD => 10*1024*1024 / (60*700) => Approx 250 Minutes
- HDD => 10*1024*1024 / (60*100) => Approx 1750 Minutes

Reading the Data – Parallel, 5 Nodes

- General Hard Disks support up to 100MBPS
- SSD supports up to ~700 MBPS

- Data to Read 10 TB
- Single Node to read 2 TB
- SSD => 2*1024*1024 / (60*700) => Approx 50 Minutes
- HDD => 2*1024*1024 / (60*100) => Approx 350 Minutes

Network transfer rates limit the reading speed. For SSD 700MBPS may not achieve.

Reading 100 TB Data

- Data to Read 100 TB
- Single Node with SSD (700MBPS)
- 1000 Nodes with SSD (700MBPS)

=> Approx 42 Hours
=> Approx 2.5 Minutes

- SSD Costly Affair
- HDD
- Single Node with HDD (100MBPS) => Approx
- 1000 Nodes with HDD (100MBPS) =>
- => Approx 12 Days
 - => Approx 17 Minutes

Reading 100 TB Data

- 1000 Nodes
 - SSD => 2.5 minutes approx.
 - HDD=> 17 minutes approx.
- Although HDD is taking almost 7 times more time, still
 - Not too much difference
 - Comparing the cost, waiting for 17 min is preferable
- Reasonable?

Network transfer rates limit the reading speed. For SSD 700MBPS may not achieve.

Bottlenecks

- Network Data Transfer rates
- For 100 TB, 1000 nodes
 - Remote storage with 10MBPS => 165 Minutes
 - Local storage with 50MBPS => 33 Minutes
 - Better to move computation rather than data
- Machine Failure
 - Need Fault Tolerance

All Proiects	BY NAME				
BY CATECODY	HTTP Server	Commons	Guacamole	Lucene	Pivot
DI CATEGORI	А	Community	Gump	Lucene.Net	Portable Runtim
Attic	AGE	Development	Н	М	(APR)
Big Data	APISIX	Cordova	HAWQ	MADlib	Portals
Build Management	Accumulo	CouchDB	HBase	MINA	Pulsar
Cloud	ActiveMQ	Creadur	Hadoop	MXNet	Q
Content	Airavata	Curator	Helix	Mahout	Qpid
Databases	Airflow	cTAKES	Hive	ManifoldCF	R
FTP	Allura	D	Нор	Maven	Ranger
Graphics	Ambari	DB	HttpComponents	Mesos	Ratis
HTTP	Ant	Daffodil	Hudi	Mnemonic	RocketMQ
HTTP-module	Archiva	DataFu		MyFaces	Roller
Incubating	Aries	DataSketches	Iceberg	Mynewt	Royale
JavaEE	Arrow	DeltaSpike	Ignite	N	Rya
Libraries	AsterixDB	Directory	Impala	NetBeans	S
Mail	Atlas	DolphinScheduler	InLong	NiFi	SINGA
Mobile	Attic	Doris	Incubator	Nutch	SIS
Network-client	Avro	Drill	IoTDB	NuttX	Samza
Network-server	Axis	Druid	J	0	Santuario
OSGi	В	Dubbo	JMeter	OFBiz	SeaTunnel
RegExp	BVal	E	JSPWiki	ORC	Sedona
Retired	Bahir	ECharts	Jackrabbit	Olingo	Serf
Search	Beam	Empire-db	James	Oozie	ServiceComb
Security	Bigtop	EventMesh	Jena	OpenJPA	ServiceMix
SQL	Bloodhound	F	Johnzon	OpenMeetings	ShardingSphere
Testing	BookKeeper	Felix	Juneau	OpenNLP	ShenYu
Virtual-machine	Brooklyn	Fineract	jclouds	OpenOffice	Shiro
Web-framework	BuildStream	Flagon	K	OpenWebBeans	SkyWalking
XML	bRPC	Flex	Kafka	OpenWhisk	Sling
	С	Flink	Karaf	Ozone	Solr
	CXF	Flume	Kibble	Р	SpamAssassin
	Calcite	Fluo	Knox	PDFBox	Spark
	Camel	FreeMarker	Kudu	PLC4X	Steve
	CarbonData	G	Kvrocks	POI	Storm
	Cassandra	Geode	Kylin	Parquet	StreamPipes
	Causeway	Geronimo	Kyuubi	Perl	Streams
	Cavenne	Giraph	- I	Detri	Struts

Pig

Pinot

Phoenix

Libcloud

Logging Services

Linkis

Submarine

Subversion

Superset Synapse

Syncope SystemDS Т

U

V

W Web Services

Х XML Graphics Xalan Xerces

Y

Ζ

UIMA Unomi

VCL Velocity

Whimsy Wicket

Yetus YuniKorn

Zeppelin ZooKeeper

TVM Tapestry Tcl Tez Thrift Tika TinkerPop TomEE Tomcat Traffic Control Traffic Server Turbine

APACHE PROJECT LIST

Cayenne

Cocoon

CloudStack

Celix

Giraph

Gora

Griffin

Groovy

Gobblin

From Apache..

The Apache Hadoop software library is a framework that allows for the <mark>distributed processing</mark> of large data sets across <mark>clusters of computers</mark> using simple programming models.

It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.

Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures.

What is Hadoop?

- Open-Source software platform
- Distributed storage and processing
- On computer clusters built using
- Commodity hardware
- Commodity Hardware => Cheaper hardware
- Computer Clusters => Group of computers in a network
 - Usually for single or similar purpose

About Hadoop

- Google
 - 2003 Paper on GFS, Google File System
 - 2004 Paper on Map Reduce
 - Launched GFS and Map Reduce
- 2006, Doug Cutting at Yahoo along with Mike Cafarella Made Hadoop
 - Originally designed to support distribution for Nutch
 - Open Source
 - Named after Doug's son's Toy Elephant
- Apache Projects

Hadoop Goals

- Faster Data processing
- Scalability
- Cost
- Fault Tolerance
- Ability to handle Hardware Failures

Hadoop Components

Hadoop Components

- Hadoop Common
- Hadoop
 Distributed File
 System (HDFS)
- Hadoop MapReduce
- Hadoop Yet
 Another Resource
 Navigator (YARN)

Hadoop Commons

- Provides libraries and utilities
- Necessary java jar files and scripts for start/stop Hadoop
- Acts as a bridge between
 - Hadoop modules
 - And Operating system layer

HDFS

- Based on GFS Google file system
- Stores large data sets
- High-throughput access to application data
- Distributed file system
 - Can span multiple nodes in a cluster
- Reliable
- Deals with faults and failures
 - at application layer

MapReduce

- Simple yet powerful model
- Breaks down bigger tasks into smaller tasks
- Two phases
 - Map : Filtering and Sorting
 - Reduce: Combine / Summary function
- Distributed Processing
 - Each node processes small data

YARN

- Yet Another Resource Navigator
- Cluster Management Layer
- Does resource allocation
 - to various applications in Hadoop Cluster
- Task Scheduler and Management
- Decouples functions of MapReduce
 - Resource Management
 - Scheduling Capabilities

MapReduce Data Processing & Resource Management

HDFS Distributed File Storage

File System

File System

- A process that manages how and where data on a storage disk is -
 - Stored
 - Accessed
 - And Managed
- General Storage
 - HDD Hard disk, Low speed, Low cost
 - SSD Solid state drives, higher speed, Higher cost
- General File systems
 - FAT FAT12, FAT16, FAT32, exFAT
 - NTFS
 - HFS, HFS+, HPFS, APFS, UFS
 - Ext2, ext3, ext4

GFS vs HDFS

GFS

- Google File System
- Proprietary by Google
- Not publicly available, Internally used by Google
- 2003

HDFS

- Hadoop Distributed File System
- Open Source
- Publicly available and being used by numerous industries
- Part of Apache Friends
- 2006

Hadoop In Real Life

Hadoop Wins Terabyte Sort Benchmark (July 2008)

- One of Yahoo's <u>Hadoop</u> clusters sorted 1 terabyte of data in **209 seconds**
- The cluster had 910 nodes;
- Each Node:
 - 2 quad core Xeons @ 2.0ghz per node;
 - 4 SATA disks per node;
 - 8GB RAM per a node;
 - 1 gigabit ethernet on each node;
 - Red Hat Enterprise Linux Server Release 5.1 (kernel 2.6.18);
 - Sun Java JDK 1.6.0_05-b13
- 40 nodes per a rack;
- 8 gigabit ethernet uplinks from each rack to the core;

Facebook

- Stores copies of their internal data
 - User profiles
 - User network of friends
 - Photos etc.
- Analysis of user behaviour
- Goals:
 - Improve services
 - Target advertising
 - Detect fraudulent activities

Amazon

- Product Recommendation Engine
- Analysis of
 - Past purchases
 - Browsing History
 - User behaviour
- Goals
 - Improve product suggestions
 - Better sales
 - Customer experience

LinkedIn

- Recommendations
 - People You May Know
 - Jobs You might be interested in
 - Skill endorsement suggestions

Twitter

- Stores and processes
 - Tweets
 - Log files
 - Other data
- Goals
 - Various Analytics Tasks
 - Understanding user behaviour
 - Trending Topics
 - Sentiment Analysis

Uber

- Data Analysis
 - Drivers
 - Rides
 - User behaviour
- Machine Learning
 - Predict ride demand
 - Estimate Fares
 - Detect fraudulent activities

Uber

Session 2

+

т • •

Questions from Previous Session

- "Moving Processing Rather than Data"
 - Traditionally,
 - Data is extracted from stored location and moved to a location where processing will happen
 - Works for small amount of data
 - Highly inefficient for massive volume
 - Hadoop, follows "Moving Processing to the Data"
 - The code which will do the processing is moved to the stored data
 - Efficient for large datasets, Minimal data movement over the network
 - Implemented through MapReduce
 - Map tasks are distributed across the cluster and run on the nodes where the data blocks are
 - The results (which are much smaller than raw data) need to be transferred

Data Centers

- Facebook Data center on the right.
- Huge Campus of many buildings
- Each building has tons of racks.
- Three main components of infrastructure
 - Compute
 - Storage
 - Network
- Needs
 - Cooling
 - Avoiding high temperature
 - Controlled humidity levels

Hadoop Cluster: Rack

- Rack is a collection of nodes.
- Racks are interconnected over network

Hadoop Nodes

- NameNode
- DataNode
- A node is a machine / a computer
 - CPU
 - RAM
 - Disk
- A node is connected to a network
- All nodes are interconnected

Hadoop Nodes

Х	Name Node	Data Node
Processor	2 Quad Core CPUs running @ 2 GHz	2 Quad Core CPUs running @ 2 GHz
RAM	128 GB	64 GB
Disk	6x 1 TB SATA	12-24x 1 TB SATA
Network	10 Gigabit Ethernet	10 Gigabit Ethernet

HDFS

- Distributed file system
- In General, File Systems are embedded within OS Kernel
 - Runs as OS Process
- HDFS is a user-space file system
 - Works as a user process
 - Within the process space allocated to user process
- Creates multiple replicas of data blocks
 - Better Reliability
 - Rapid Access

HDFS contd..

- Block size 64MB, 128 MB
- Traditional file system block size is 4-8 KB
- These data blocks are placed on the computer nodes
- Nodes which are in cluster => Cluster Nodes aka Data nodes
- NameNode
 - Responsible for storage and management of metadata
 - Informs MapReduce where the data is

HDFS Replication

HDFS Block Replication

NameNode

- Master node, Contains metadata
- Maintains the directories and files and blocks on Data Nodes
- Functions
 - Manages namespace of the file system in memory
 - Maintains inode information
 - Maps inode to the list of blocks and locations
 - Authorization and authentication
 - Creates checkpoints and logs the namespace changes
 - Monitors the health of DataNodes
 - In case there is a missing block, replicates it.

Meta Data at NameNode

- Metadata has many information stored
- Namespace Information
 - Details about directories and files, names, permissions, ownership, last modified time
- File to Block Mapping
- Block to DataNode Mapping
- File System Properties
 - Block size, replication factor
- Transaction Logs
- Checkpoints

DataNode

- Slave Node
- Provide the actual storage
- Deployed on each machine
- Functions
 - Responsible to process read and write requests for the clients
 - Handles block storage on multiple volumes while maintaining integrity
 - Periodically sends info to NameNode
 - Heartbeats
 - Block reports

What is Heartbeat?

Heartbeat is a signal sent from DN to NN to indicate that it is operational and functioning correctly

Hadoop Client

- It is neither master nor slave.
- Used for:
 - loading the data into cluster,
 - submit MapReduce jobs describing how the data should be processed
 - and then retrieves the data to see the response after job completion.

Secondary NameNode

- This is not a backup NameNode
- Performs housekeeping functions for primary NameNode
- Checkpointing
 - Process of -
 - Periodically merging the namespace image with the edit log
 - So that the edit log does not become very large
- Relieving the NameNode
 - Offloads some work of the primary NameNode
- Recovery Aid
 - Does not become primary but the checkpointing function aids in reduced recovery time

HDFS Contd..

- Implemented on commodity hardware
- Used for Large files GB, TB and beyond
- Automatic recovery of nodes
 - If a node fails, File system auto recovers
- Suitable for
 - Data written once, accessed many times
 - E.g log files audit logs, server logs, stream of data
- Not suitable for
 - Small data files
 - Reading content from any random position
 - Best for reading from beginning or end of the file

Hadoop Assumptions

- Hardware will fail
- Processing will be done in batches
- Apps that run HDFS have large datasets, GBs to TBs or more..
- Portability is important
- Availability of high bandwidth scaled to hundred of node in a cluster
- Support tens of millions of file in a single instance
- Application that needs write once- read many access model.

Map Reduce

- Job Trackers
 - Master which manages the jobs and resources in the cluster
 - Schedules the Map task on TaskTracker of the same machine
- Task Trackers
 - Slaves deployed on each machine
 - Responsible for running the Map and Reduce tasks
- Job History Server
 - A Daemon
 - Saves historical info about the tasks completed

YARN

- Splits up
 - Resource Management
 - Job Scheduling and monitoring
- Into separate daemons
 - Global resource manager (RM)
 - ApplicationMaster (AM)
- Single node does not have to handle both -
 - scheduling and resource management
- Responsibilities are distributed across cluster

Hadoop Ecosystem

ETL PIPELINE

Hadoop Ecosystem – Data Ingestion

• SQOOP

Hadoop Ecosystem – Data Pre-processing

• SQOOP

Hadoop Ecosystem – Data Storage

• Pig

• SQOOP

Hadoop Ecosystem – Data Processing

Hadoop Ecosystem – Data Analysis

Hadoop Ecosystem – Data Visualization

Hadoop Ecosystem

Hadoop Ecosystem

Key Components of Hadoop Ecosystem

- Apache Hbase
- Apache Hive
- Apache Hcatalog
- Apache Pig
- Apache Mahout
- Apache Oozie
- Apache ZooKeeper
- Apache Sqoop

- Non-Relational Database
- Data Access and Query
- Metadata Service
- Scripting platform
- Machine learning libraries for Data Mining
- Workflow and scheduling services
- Cluster coordination
- Data Integration Services

HBase

- **Column-Oriented Database:** HBase is a type of NoSQL database that stores data in a column-oriented format, which is efficient for read and write operations on big datasets.
- Scalability: It provides linear and modular scalability, allowing you to add more nodes as your data grows.
- **Real-Time Access:** HBase supports real-time read/write access to your Big Data. It's designed to host very large tables with billions of rows and millions of columns.
- Automatic Sharding: HBase automatically partitions data and distributes it across the cluster, eliminating the need for manual sharding.
- Fault-Tolerant: Provides automatic recovery support and replicates data across different nodes to ensure high availability and fault tolerance.
- **Consistent Read/Write:** Provides strong consistency guarantees for reads and writes, which is a unique feature among NoSQL databases.
- Does not provide own query or scripting language can be accessible through Java Thrift and REST APIs.

Hive

- Data warehouse software
- Responsible for reading-writing and managing large datasets
- SQL Like interface
- Supports various data formats such as
 - Text Files, CSV, Parquet, JSON, and JDBC storage handlers.
 - And more..

HCatelog

- **Table Management Layer:** HCatalog is a table and storage management layer for Hadoop that allows users to share and access data in a tabular format across Hadoop tools.
- **Data Abstraction:** It abstracts the user from the complexities of where and in what format data is stored.
- Interoperability: Allows MapReduce, Hive, and Pig jobs to read and write data in the same format, improving interoperability.
- Schema and Location Transparency: Provides a centralized location for storing data schema information, allowing for schema and location transparency.

- Scripting Language: Pig uses a scripting language called Pig Latin, which is specifically designed for expressing data transformations in parallel across large data sets.
- **High Level Abstraction:** Provides a high level of abstraction for analyzing large datasets, making it easier to write and read data processing programs.
- Extensible: Allows developers to create custom functions to meet their specific data processing requirements.

- **Data Transfer:** Sqoop is a command-line interface application for transferring data between relational databases and Hadoop.
- **Bi-Directional Transfer:** It supports bi-directional data transfer, allowing data to be moved from a relational database to Hadoop and vice versa.
- Integration with RDBMS: Provides connectivity with relational databases such as MySQL, Oracle, PostgreSQL, etc.
- Efficiency: Uses MapReduce to efficiently transfer bulk data.

Oozie

- Workflow Scheduler: Oozie is a workflow scheduler system that manages Hadoop jobs.
- **DAG:** It allows users to create Directed Acyclic Graphs (DAGs) of workflows, which can be run in parallel and sequentially in Hadoop.
- Integration: Supports various Hadoop jobs such as MapReduce, Pig, Hive, and Sqoop, as well as system-specific jobs like Java programs and shell scripts.

Mahout

- Machine Learning: Mahout is a machine learning library for scalable data analytics.
- Wide Variety of Algorithms: It includes various implementations of machine learning algorithms, such as clustering, classification, and collaborative filtering.
- Scalability: It's built on top of Hadoop, allowing it to leverage Hadoop's MapReduce and HDFS for distributed computation.

ZooKeeper

- **Distributed Coordination:** Zookeeper provides a reliable distributed coordination service which is used for maintaining configuration information, naming, providing distributed synchronization, and providing group services.
- **Reliability:** It is fast with high reliability. Data stored in Zookeeper is replicated over all the nodes in the ecosystem, making it highly reliable.
- Simple API: Zookeeper provides a simple API that allows developers to implement common coordination tasks, such as electing a master server, managing group membership, and managing metadata.

Hadoop Limitations

- Security Concerns
 - Built in java
- Vulnerable by Nature
- Not fit for small data
- Potentially Stability Issues
- General Limitations