

Purpose?

Course Details

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECCDLO	Big Data	03			03			02
7014	Analytics	03			03			05

Course	Course	Examination Scheme							
Code	Name	Theory Marks			KS	Exam	Term	Practical	Total
		Internal Assessment		End Sem.	Duration	Work	and Oral		
		Test1	Test2	Avg.	Exam.	(Hrs.)			
ECCDLO 7014	Big Data Analytics	20	20	20	80	03			100

What will you learn?

• Data Analytics

Science of analyzing the raw data in order to make meaningful conclusions

What's not covered?

INTELLIGENCE

LEARNING

DEEP LEARNING

NETWORKS

PROGRAMMING LANGUAGES

WEB/MOBILE APP DEVELOPMENT

Requirements

Technical Requirements

- Softwares
 - VSCode
 - XAMPP or similar
 - MongoDB
 - Python
- Github
- Cloud
 - AWS

Skills

- Technical
 - Familiarity with Database and related concepts
- Teamwork
- Problem Solving Approach
- Attitude

What exactly is Big Data?

What qualifies as Big Data?

- Share market data?
- Google Search queries?
- Tweets?
- Photos/Videos shared online?

One minute of your life

Data Never Sleeps 1.0 vs. Data Never Sleeps 10.0

Computer Memory

Megabyte	1,000,000 bytes
Gigabyte	I,000,000 bytes
Terabyte	1,000,000,000 bytes
Petabyte	1,000,000,000,000 bytes
Exabyte	1,000,000,000,000,000 bytes
Zettabyte	1,000,000,000,000,000,000 bytes
Yottabyte	1,000,000,000,000,000,000,000 bytes

Table 1: Data Measurement Units

Unit	Abbreviation	Decimal Value	Binary Value	Decimal Size
bit	b	0 or 1	0 or 1	1/8 of a byte
byte	В	8 bits	8 bits	1 byte
kilobyte	КВ	1,000 ¹ bytes	1,024 ¹ bytes	1,000 bytes
megabyte	MB	1,000 ² bytes	1,024 ² bytes	1,000,000 bytes
gigabyte	GB	1,000 ³ bytes	1,024 ³ bytes	1,000,000,000 bytes
terabyte	ТВ	1,000 ⁴ bytes	1,024 ⁴ bytes	1,000,000,000,000 bytes
petabyte	РВ	1,000 ⁵ bytes	1,024 ⁵ bytes	1,000,000,000,000,000 bytes
exabyte	EB	1,000 ⁶ bytes	1,024 ⁶ bytes	1,000,000,000,000,000,000 bytes
zettabyte	ZB	1,000 ⁷ bytes	1,024 ⁷ bytes	1,000,000,000,000,000,000,000 bytes
yottabyte	YB	1,000 ⁸ bytes	1,024 ⁸ bytes	1,000,000,000,000,000,000,000,000 bytes

Data inflation

Unit	Size	What it means
Bit (b)	1 or 0	Short for "binary digit", after the binary code (1 or 0) computers use to store and process data
Byte (B)	8 bits	Enough information to create an English letter or number in computer code. It is the basic unit of computing
Kilobyte (KB)	1,000, or 2 ¹⁰ , bytes	From "thousand" in Greek. One page of typed text is 2KB
Megabyte (MB)	1,000KB; 2 ²⁰ bytes	From "large" in Greek. The complete works of Shakespeare total 5MB. A typical pop song is about 4MB
Gigabyte (GB)	1,000MB; 2 ³⁰ bytes	From "giant" in Greek. A two-hour film can be compressed into 1-2GB
Terabyte (TB)	1,000GB; 2 ⁴⁰ bytes	From "monster" in Greek. All the catalogued books in America's Library of Congress total 15TB
Petabyte (PB)	1,000TB; 2 ⁵⁰ bytes	All letters delivered by America's postal service this year will amount to around 5PB. Google processes around 1PB every hour
Exabyte (EB)	1,000PB; 2 ⁶⁰ bytes	Equivalent to 10 billion copies of The Economist
Zettabyte (ZB)	1,000EB; 2 ⁷⁰ bytes	The total amount of information in existence this year is forecast to be around 1.2ZB
Vallat AVD)	1 0007B · 280 butes	Currently too hig to imagine

2

Source: https://semiconductor.samsung.com/support/tools-resources/dictionary/bits-and-bytes-units-of-data/

Big Data: Volume

Global Data Generated Annually

Data Generated per year..

Cost of Data Storage

1 TB HDD COSTS AROUND \$30

HOW MUCH FOR 1 ZB?

So, when we call it, "The Big Data"

Big Data Characteristics

The 3 V's of big data

Big data is a collection of data from various sources, often characterized by what's become known as the 3 V's: *volume*, *velocity* and *variety*.

Volume	Velocity	Variety
The amount of data from myriad sources.	The speed at which big data is generated.	The types of data: structured, semistructured, unstructured.

Volume

Massive amount of data generated every minute

- Social Media
- Stocks

Beyond the capability of traditional databases

- Limitations on Memory
- Processing capabilities

Influenced by many factors

• IoT, Business Transactions, Social Media

Variety

Different types of data

- Structured
- Semi-structured
- Unstructured

Integration challenges due to varying formats

- Ingesting data from different sources
- Data of different format

Influenced by diverse data sources

• Databases, text, images, videos, other formats

Velocity

Speed of data generation

- Real time data streams
- User generated data
- Machine generated data

Speed of data processing

- Real time analysis
- Stream processing
- Data in motion Vs Data at rest

Influenced by diverse data sources

• IoT, Business Transactions, Social Media, live streaming, sensor data

Veracity

Data Quality

- Noisy, incomplete, or inconsistent
- Poor quality can lead to inaccurate analysis and decisions

Data Trustworthiness

- Depends on the source of data
- Critical to verify the authenticity and reliability

Data Uncertainty

- Data collection process
- Sampling errors
- Missing Data, Sampling errors and more..

Value

Usefulness of data

- Decision Making
- Benefits to the organization, people

Data Insights

- Drives strategy
- Creates business intelligence

Finances

- Cost Saving, Data Monetization
- Improved customer experience
- Risk Mitigation,

5 Vs of Big Data

Volume:	Refers to the massive amount of data being generated every second.
Velocity:	Refers to the speed at which data is being generated and processed.
Variety:	Refers to the different types of data: structured, semi-structured, and unstructured.
Veracity:	Refers to the reliability and accuracy of data, emphasizing the importance of data quality.
Value:	Refers to the ability to turn raw data into meaningful insights that can lead to beneficial outcomes.

Need More Vs?

There are more Vs indeed!!!

Vs of Big Data

Vs of Big Data

So, Big Data

- Refers to
 - Massive Volume of Data
 - Collected from Variety of data sources
- Big Data is -
 - Both Structured and Unstructured data
 - Large and Complex
 - Variable in nature
 - Difficult to process using traditional databasesx

Types of Big Data

Types of Big Data

Structured Data

Semi Structured Data

Structured Data

Structured Data

- Tables from Relational Databases
- Examples
 - Customer information in CRM (Customer Relationship Management)
 - E-Commerce Transaction data
 - Employees Data in HRMS

Semi Structured Data

Semi-Structured Data

What's Hiding in Your Unstructured Data?

Type of Data..

Big Data Sources

Social Media
Machine Generated Data
Website data
Activity logs
Sensors Data
Transactional Data
Data made available by Govt. – Research data
Multimedia
Telecom Data
And more

Problems in Big Data

Why RDBMS Fails?

Unstructured data not supported

Must have a schema

Usage of Joins makes it slow

Can not handle data coming at high speed – Velocity

Massive Data - Volume

Scalability

Problems in Big Data

Problems in Big Data

Solution?

What's Driving BDA?

Traditional vs Big Data Approach

Traditional vs Big Data Approach

Traditional v/s Big Data Approach

Business Users Asking what to do. IT delivering it. IT delivering a platform Business Users exploring the possibilities

Advantages of BDA

- Big Data Analysis Approach
 - Simple Model
 - Simple algorithm
 - Can be applied over large data
 - Produces more accurate analysis rather than Sophisticated models/algos.
 - Sophisticated model
 - Already built in models
 - But might not be suitable for the need
 - People improve or develop new algos

Big Data Challenges

- Data Quality
- Cost
- Data integration
- Storage and processing
- Data Security and Privacy
- Data Analysis and Interpretation
- Real time analysis
- Data Governance

- Scalability
 - Storage
 - Processing
- Horizontal Scalability

Horizontal Scaling (scaling out)

- Robustness and Fault tolerance
 - Does not go down if one node goes down
 - Data remains consistent

• Low Latency reads and updates

Latency = 20ms + 25ms = 45ms

• Integrity

- Extensible
 - Allows new features at minimal cost/change

• Cost Effective

- Security Secure system, Protects the data
- Ease of Use User friendliness
- General One system multiple usage or with minimal changes

Case Studies

Big Data Applications

• Some of those...

Case Study - Clickstream

- Clickstream Data
 - Information collected about a user
 - While they visit a website
 - In what order the pages are visited
 - How much time is spent?
 - Frequency returning user?
 - Exit page? Or a Feature?
- Clickstream analysis
 - Process of collecting and analyzing the data
 - User behaviour analysis
- Used by
 - Search engines for ads
 - Other websites for ads
 - Personalised ads

Source: sovrn.com

Case Study - Clickstream

Why would RDBMS not work here?

- Huge data
 - Billions of clicks each month for an e-commerce website
 - Historical data needed for predictions
- Pages are generated real-time, dynamically
 - Based on user clicks, search queries etc
 - Requires too much data to be processed at run-time, not possible with RDBMS.
 - Data may be coming from multiple data sources
 - Clickstream data from xyz service
 - Customer data from local e-commerce database
 - Other types of data..

Case Study – Word Count

Case Study – Sentiment Analysis

- For a given text
 - Guess the mood
- Applications?

Case Studies – Sentiment Analysis

Big Data Technolgies

Copyright © 2012 Dave Feinleib

dave@vcdave.com

blogs.forbes.com/davefeinleib

Big Data Technolgies

the amount of data stored by the average company today